Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{5x-3y}{y-x}\text{, }&x\neq y\\n\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{y\left(n-3\right)}{5-n}\text{, }&n\neq 5\\x\in \mathrm{C}\text{, }&y=0\text{ and }n=5\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{5x-3y}{y-x}\text{, }&x\neq y\\n\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{y\left(n-3\right)}{5-n}\text{, }&n\neq 5\\x\in \mathrm{R}\text{, }&y=0\text{ and }n=5\end{matrix}\right.
Graph
Share
Copied to clipboard
3x=nx-2x-\left(n-3\right)y
Use the distributive property to multiply n-2 by x.
3x=nx-2x-\left(ny-3y\right)
Use the distributive property to multiply n-3 by y.
3x=nx-2x-ny+3y
To find the opposite of ny-3y, find the opposite of each term.
nx-2x-ny+3y=3x
Swap sides so that all variable terms are on the left hand side.
nx-ny+3y=3x+2x
Add 2x to both sides.
nx-ny+3y=5x
Combine 3x and 2x to get 5x.
nx-ny=5x-3y
Subtract 3y from both sides.
\left(x-y\right)n=5x-3y
Combine all terms containing n.
\frac{\left(x-y\right)n}{x-y}=\frac{5x-3y}{x-y}
Divide both sides by x-y.
n=\frac{5x-3y}{x-y}
Dividing by x-y undoes the multiplication by x-y.
3x=nx-2x-\left(n-3\right)y
Use the distributive property to multiply n-2 by x.
3x=nx-2x-\left(ny-3y\right)
Use the distributive property to multiply n-3 by y.
3x=nx-2x-ny+3y
To find the opposite of ny-3y, find the opposite of each term.
3x-nx=-2x-ny+3y
Subtract nx from both sides.
3x-nx+2x=-ny+3y
Add 2x to both sides.
5x-nx=-ny+3y
Combine 3x and 2x to get 5x.
\left(5-n\right)x=-ny+3y
Combine all terms containing x.
\left(5-n\right)x=3y-ny
The equation is in standard form.
\frac{\left(5-n\right)x}{5-n}=\frac{y\left(3-n\right)}{5-n}
Divide both sides by 5-n.
x=\frac{y\left(3-n\right)}{5-n}
Dividing by 5-n undoes the multiplication by 5-n.
3x=nx-2x-\left(n-3\right)y
Use the distributive property to multiply n-2 by x.
3x=nx-2x-\left(ny-3y\right)
Use the distributive property to multiply n-3 by y.
3x=nx-2x-ny+3y
To find the opposite of ny-3y, find the opposite of each term.
nx-2x-ny+3y=3x
Swap sides so that all variable terms are on the left hand side.
nx-ny+3y=3x+2x
Add 2x to both sides.
nx-ny+3y=5x
Combine 3x and 2x to get 5x.
nx-ny=5x-3y
Subtract 3y from both sides.
\left(x-y\right)n=5x-3y
Combine all terms containing n.
\frac{\left(x-y\right)n}{x-y}=\frac{5x-3y}{x-y}
Divide both sides by x-y.
n=\frac{5x-3y}{x-y}
Dividing by x-y undoes the multiplication by x-y.
3x=nx-2x-\left(n-3\right)y
Use the distributive property to multiply n-2 by x.
3x=nx-2x-\left(ny-3y\right)
Use the distributive property to multiply n-3 by y.
3x=nx-2x-ny+3y
To find the opposite of ny-3y, find the opposite of each term.
3x-nx=-2x-ny+3y
Subtract nx from both sides.
3x-nx+2x=-ny+3y
Add 2x to both sides.
5x-nx=-ny+3y
Combine 3x and 2x to get 5x.
\left(5-n\right)x=-ny+3y
Combine all terms containing x.
\left(5-n\right)x=3y-ny
The equation is in standard form.
\frac{\left(5-n\right)x}{5-n}=\frac{y\left(3-n\right)}{5-n}
Divide both sides by 5-n.
x=\frac{y\left(3-n\right)}{5-n}
Dividing by 5-n undoes the multiplication by 5-n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}