Solve for x
x=-\frac{7y}{3}+\frac{29}{9}
Solve for y
y=-\frac{3x}{7}+\frac{29}{21}
Graph
Share
Copied to clipboard
3x+7y-\frac{20}{3}=3
Subtract \frac{8}{3} from -4 to get -\frac{20}{3}.
3x-\frac{20}{3}=3-7y
Subtract 7y from both sides.
3x=3-7y+\frac{20}{3}
Add \frac{20}{3} to both sides.
3x=\frac{29}{3}-7y
Add 3 and \frac{20}{3} to get \frac{29}{3}.
\frac{3x}{3}=\frac{\frac{29}{3}-7y}{3}
Divide both sides by 3.
x=\frac{\frac{29}{3}-7y}{3}
Dividing by 3 undoes the multiplication by 3.
x=-\frac{7y}{3}+\frac{29}{9}
Divide \frac{29}{3}-7y by 3.
3x+7y-\frac{20}{3}=3
Subtract \frac{8}{3} from -4 to get -\frac{20}{3}.
7y-\frac{20}{3}=3-3x
Subtract 3x from both sides.
7y=3-3x+\frac{20}{3}
Add \frac{20}{3} to both sides.
7y=\frac{29}{3}-3x
Add 3 and \frac{20}{3} to get \frac{29}{3}.
\frac{7y}{7}=\frac{\frac{29}{3}-3x}{7}
Divide both sides by 7.
y=\frac{\frac{29}{3}-3x}{7}
Dividing by 7 undoes the multiplication by 7.
y=-\frac{3x}{7}+\frac{29}{21}
Divide \frac{29}{3}-3x by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}