Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+6-8x^{2}=-2
Subtract 8x^{2} from both sides.
3x+6-8x^{2}+2=0
Add 2 to both sides.
3x+8-8x^{2}=0
Add 6 and 2 to get 8.
-8x^{2}+3x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-8\right)\times 8}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 3 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-8\right)\times 8}}{2\left(-8\right)}
Square 3.
x=\frac{-3±\sqrt{9+32\times 8}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-3±\sqrt{9+256}}{2\left(-8\right)}
Multiply 32 times 8.
x=\frac{-3±\sqrt{265}}{2\left(-8\right)}
Add 9 to 256.
x=\frac{-3±\sqrt{265}}{-16}
Multiply 2 times -8.
x=\frac{\sqrt{265}-3}{-16}
Now solve the equation x=\frac{-3±\sqrt{265}}{-16} when ± is plus. Add -3 to \sqrt{265}.
x=\frac{3-\sqrt{265}}{16}
Divide -3+\sqrt{265} by -16.
x=\frac{-\sqrt{265}-3}{-16}
Now solve the equation x=\frac{-3±\sqrt{265}}{-16} when ± is minus. Subtract \sqrt{265} from -3.
x=\frac{\sqrt{265}+3}{16}
Divide -3-\sqrt{265} by -16.
x=\frac{3-\sqrt{265}}{16} x=\frac{\sqrt{265}+3}{16}
The equation is now solved.
3x+6-8x^{2}=-2
Subtract 8x^{2} from both sides.
3x-8x^{2}=-2-6
Subtract 6 from both sides.
3x-8x^{2}=-8
Subtract 6 from -2 to get -8.
-8x^{2}+3x=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+3x}{-8}=-\frac{8}{-8}
Divide both sides by -8.
x^{2}+\frac{3}{-8}x=-\frac{8}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{3}{8}x=-\frac{8}{-8}
Divide 3 by -8.
x^{2}-\frac{3}{8}x=1
Divide -8 by -8.
x^{2}-\frac{3}{8}x+\left(-\frac{3}{16}\right)^{2}=1+\left(-\frac{3}{16}\right)^{2}
Divide -\frac{3}{8}, the coefficient of the x term, by 2 to get -\frac{3}{16}. Then add the square of -\frac{3}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{8}x+\frac{9}{256}=1+\frac{9}{256}
Square -\frac{3}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{8}x+\frac{9}{256}=\frac{265}{256}
Add 1 to \frac{9}{256}.
\left(x-\frac{3}{16}\right)^{2}=\frac{265}{256}
Factor x^{2}-\frac{3}{8}x+\frac{9}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{16}\right)^{2}}=\sqrt{\frac{265}{256}}
Take the square root of both sides of the equation.
x-\frac{3}{16}=\frac{\sqrt{265}}{16} x-\frac{3}{16}=-\frac{\sqrt{265}}{16}
Simplify.
x=\frac{\sqrt{265}+3}{16} x=\frac{3-\sqrt{265}}{16}
Add \frac{3}{16} to both sides of the equation.