Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+\frac{13}{2}+\frac{8}{9}=100y+\frac{1}{2}-\frac{8}{10}\times 0.3
Add 6 and \frac{1}{2} to get \frac{13}{2}.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{8}{10}\times 0.3
Add \frac{13}{2} and \frac{8}{9} to get \frac{133}{18}.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{4}{5}\times 0.3
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{6}{25}
Multiply \frac{4}{5} and 0.3 to get \frac{6}{25}.
3x+\frac{133}{18}=100y+\frac{13}{50}
Subtract \frac{6}{25} from \frac{1}{2} to get \frac{13}{50}.
3x=100y+\frac{13}{50}-\frac{133}{18}
Subtract \frac{133}{18} from both sides.
3x=100y-\frac{1604}{225}
Subtract \frac{133}{18} from \frac{13}{50} to get -\frac{1604}{225}.
\frac{3x}{3}=\frac{100y-\frac{1604}{225}}{3}
Divide both sides by 3.
x=\frac{100y-\frac{1604}{225}}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{100y}{3}-\frac{1604}{675}
Divide 100y-\frac{1604}{225} by 3.
3x+\frac{13}{2}+\frac{8}{9}=100y+\frac{1}{2}-\frac{8}{10}\times 0.3
Add 6 and \frac{1}{2} to get \frac{13}{2}.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{8}{10}\times 0.3
Add \frac{13}{2} and \frac{8}{9} to get \frac{133}{18}.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{4}{5}\times 0.3
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{6}{25}
Multiply \frac{4}{5} and 0.3 to get \frac{6}{25}.
3x+\frac{133}{18}=100y+\frac{13}{50}
Subtract \frac{6}{25} from \frac{1}{2} to get \frac{13}{50}.
100y+\frac{13}{50}=3x+\frac{133}{18}
Swap sides so that all variable terms are on the left hand side.
100y=3x+\frac{133}{18}-\frac{13}{50}
Subtract \frac{13}{50} from both sides.
100y=3x+\frac{1604}{225}
Subtract \frac{13}{50} from \frac{133}{18} to get \frac{1604}{225}.
\frac{100y}{100}=\frac{3x+\frac{1604}{225}}{100}
Divide both sides by 100.
y=\frac{3x+\frac{1604}{225}}{100}
Dividing by 100 undoes the multiplication by 100.
y=\frac{3x}{100}+\frac{401}{5625}
Divide 3x+\frac{1604}{225} by 100.