Solve for x
x=\frac{100y}{3}-\frac{1604}{675}
Solve for y
y=\frac{3x}{100}+\frac{401}{5625}
Graph
Share
Copied to clipboard
3x+\frac{13}{2}+\frac{8}{9}=100y+\frac{1}{2}-\frac{8}{10}\times 0.3
Add 6 and \frac{1}{2} to get \frac{13}{2}.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{8}{10}\times 0.3
Add \frac{13}{2} and \frac{8}{9} to get \frac{133}{18}.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{4}{5}\times 0.3
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{6}{25}
Multiply \frac{4}{5} and 0.3 to get \frac{6}{25}.
3x+\frac{133}{18}=100y+\frac{13}{50}
Subtract \frac{6}{25} from \frac{1}{2} to get \frac{13}{50}.
3x=100y+\frac{13}{50}-\frac{133}{18}
Subtract \frac{133}{18} from both sides.
3x=100y-\frac{1604}{225}
Subtract \frac{133}{18} from \frac{13}{50} to get -\frac{1604}{225}.
\frac{3x}{3}=\frac{100y-\frac{1604}{225}}{3}
Divide both sides by 3.
x=\frac{100y-\frac{1604}{225}}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{100y}{3}-\frac{1604}{675}
Divide 100y-\frac{1604}{225} by 3.
3x+\frac{13}{2}+\frac{8}{9}=100y+\frac{1}{2}-\frac{8}{10}\times 0.3
Add 6 and \frac{1}{2} to get \frac{13}{2}.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{8}{10}\times 0.3
Add \frac{13}{2} and \frac{8}{9} to get \frac{133}{18}.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{4}{5}\times 0.3
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
3x+\frac{133}{18}=100y+\frac{1}{2}-\frac{6}{25}
Multiply \frac{4}{5} and 0.3 to get \frac{6}{25}.
3x+\frac{133}{18}=100y+\frac{13}{50}
Subtract \frac{6}{25} from \frac{1}{2} to get \frac{13}{50}.
100y+\frac{13}{50}=3x+\frac{133}{18}
Swap sides so that all variable terms are on the left hand side.
100y=3x+\frac{133}{18}-\frac{13}{50}
Subtract \frac{13}{50} from both sides.
100y=3x+\frac{1604}{225}
Subtract \frac{13}{50} from \frac{133}{18} to get \frac{1604}{225}.
\frac{100y}{100}=\frac{3x+\frac{1604}{225}}{100}
Divide both sides by 100.
y=\frac{3x+\frac{1604}{225}}{100}
Dividing by 100 undoes the multiplication by 100.
y=\frac{3x}{100}+\frac{401}{5625}
Divide 3x+\frac{1604}{225} by 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}