Evaluate
7x-7x^{8}
Factor
7x\left(x-1\right)\left(-x^{6}-x^{5}-x^{4}-x^{3}-x^{2}-x-1\right)
Graph
Share
Copied to clipboard
5x+2x-x^{8}-6x^{8}
Combine 3x and 2x to get 5x.
7x-x^{8}-6x^{8}
Combine 5x and 2x to get 7x.
7x-7x^{8}
Combine -x^{8} and -6x^{8} to get -7x^{8}.
x\left(7-7x^{7}\right)
Factor out x.
-7x^{7}+7
Consider 3+2+2-x^{7}-6x^{7}. Multiply and combine like terms.
7\left(-x^{7}+1\right)
Consider -7x^{7}+7. Factor out 7.
\left(x-1\right)\left(-x^{6}-x^{5}-x^{4}-x^{3}-x^{2}-x-1\right)
Consider -x^{7}+1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 1 and q divides the leading coefficient -1. One such root is 1. Factor the polynomial by dividing it by x-1.
7x\left(x-1\right)\left(-x^{6}-x^{5}-x^{4}-x^{3}-x^{2}-x-1\right)
Rewrite the complete factored expression. Polynomial -x^{6}-x^{5}-x^{4}-x^{3}-x^{2}-x-1 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}