Solve for x
x=\frac{31}{54}\approx 0.574074074
Graph
Share
Copied to clipboard
3x+\frac{-5\times 17}{18}=-3
Express -5\times \frac{17}{18} as a single fraction.
3x+\frac{-85}{18}=-3
Multiply -5 and 17 to get -85.
3x-\frac{85}{18}=-3
Fraction \frac{-85}{18} can be rewritten as -\frac{85}{18} by extracting the negative sign.
3x=-3+\frac{85}{18}
Add \frac{85}{18} to both sides.
3x=-\frac{54}{18}+\frac{85}{18}
Convert -3 to fraction -\frac{54}{18}.
3x=\frac{-54+85}{18}
Since -\frac{54}{18} and \frac{85}{18} have the same denominator, add them by adding their numerators.
3x=\frac{31}{18}
Add -54 and 85 to get 31.
x=\frac{\frac{31}{18}}{3}
Divide both sides by 3.
x=\frac{31}{18\times 3}
Express \frac{\frac{31}{18}}{3} as a single fraction.
x=\frac{31}{54}
Multiply 18 and 3 to get 54.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}