Solve for w
w=\frac{-7\sqrt{7}i+3}{4}\approx 0.75-4.630064794i
w=\frac{3+7\sqrt{7}i}{4}\approx 0.75+4.630064794i
Share
Copied to clipboard
-2w^{2}+3w=44
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2w^{2}+3w-44=44-44
Subtract 44 from both sides of the equation.
-2w^{2}+3w-44=0
Subtracting 44 from itself leaves 0.
w=\frac{-3±\sqrt{3^{2}-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 3 for b, and -44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-3±\sqrt{9-4\left(-2\right)\left(-44\right)}}{2\left(-2\right)}
Square 3.
w=\frac{-3±\sqrt{9+8\left(-44\right)}}{2\left(-2\right)}
Multiply -4 times -2.
w=\frac{-3±\sqrt{9-352}}{2\left(-2\right)}
Multiply 8 times -44.
w=\frac{-3±\sqrt{-343}}{2\left(-2\right)}
Add 9 to -352.
w=\frac{-3±7\sqrt{7}i}{2\left(-2\right)}
Take the square root of -343.
w=\frac{-3±7\sqrt{7}i}{-4}
Multiply 2 times -2.
w=\frac{-3+7\sqrt{7}i}{-4}
Now solve the equation w=\frac{-3±7\sqrt{7}i}{-4} when ± is plus. Add -3 to 7i\sqrt{7}.
w=\frac{-7\sqrt{7}i+3}{4}
Divide -3+7i\sqrt{7} by -4.
w=\frac{-7\sqrt{7}i-3}{-4}
Now solve the equation w=\frac{-3±7\sqrt{7}i}{-4} when ± is minus. Subtract 7i\sqrt{7} from -3.
w=\frac{3+7\sqrt{7}i}{4}
Divide -3-7i\sqrt{7} by -4.
w=\frac{-7\sqrt{7}i+3}{4} w=\frac{3+7\sqrt{7}i}{4}
The equation is now solved.
-2w^{2}+3w=44
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2w^{2}+3w}{-2}=\frac{44}{-2}
Divide both sides by -2.
w^{2}+\frac{3}{-2}w=\frac{44}{-2}
Dividing by -2 undoes the multiplication by -2.
w^{2}-\frac{3}{2}w=\frac{44}{-2}
Divide 3 by -2.
w^{2}-\frac{3}{2}w=-22
Divide 44 by -2.
w^{2}-\frac{3}{2}w+\left(-\frac{3}{4}\right)^{2}=-22+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-\frac{3}{2}w+\frac{9}{16}=-22+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
w^{2}-\frac{3}{2}w+\frac{9}{16}=-\frac{343}{16}
Add -22 to \frac{9}{16}.
\left(w-\frac{3}{4}\right)^{2}=-\frac{343}{16}
Factor w^{2}-\frac{3}{2}w+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{343}{16}}
Take the square root of both sides of the equation.
w-\frac{3}{4}=\frac{7\sqrt{7}i}{4} w-\frac{3}{4}=-\frac{7\sqrt{7}i}{4}
Simplify.
w=\frac{3+7\sqrt{7}i}{4} w=\frac{-7\sqrt{7}i+3}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}