Solve for w
w=2+2\sqrt{13}i\approx 2+7.211102551i
w=-2\sqrt{13}i+2\approx 2-7.211102551i
Share
Copied to clipboard
3w^{2}-12w=-168
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3w^{2}-12w-\left(-168\right)=-168-\left(-168\right)
Add 168 to both sides of the equation.
3w^{2}-12w-\left(-168\right)=0
Subtracting -168 from itself leaves 0.
3w^{2}-12w+168=0
Subtract -168 from 0.
w=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 168}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -12 for b, and 168 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 168}}{2\times 3}
Square -12.
w=\frac{-\left(-12\right)±\sqrt{144-12\times 168}}{2\times 3}
Multiply -4 times 3.
w=\frac{-\left(-12\right)±\sqrt{144-2016}}{2\times 3}
Multiply -12 times 168.
w=\frac{-\left(-12\right)±\sqrt{-1872}}{2\times 3}
Add 144 to -2016.
w=\frac{-\left(-12\right)±12\sqrt{13}i}{2\times 3}
Take the square root of -1872.
w=\frac{12±12\sqrt{13}i}{2\times 3}
The opposite of -12 is 12.
w=\frac{12±12\sqrt{13}i}{6}
Multiply 2 times 3.
w=\frac{12+12\sqrt{13}i}{6}
Now solve the equation w=\frac{12±12\sqrt{13}i}{6} when ± is plus. Add 12 to 12i\sqrt{13}.
w=2+2\sqrt{13}i
Divide 12+12i\sqrt{13} by 6.
w=\frac{-12\sqrt{13}i+12}{6}
Now solve the equation w=\frac{12±12\sqrt{13}i}{6} when ± is minus. Subtract 12i\sqrt{13} from 12.
w=-2\sqrt{13}i+2
Divide 12-12i\sqrt{13} by 6.
w=2+2\sqrt{13}i w=-2\sqrt{13}i+2
The equation is now solved.
3w^{2}-12w=-168
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3w^{2}-12w}{3}=-\frac{168}{3}
Divide both sides by 3.
w^{2}+\left(-\frac{12}{3}\right)w=-\frac{168}{3}
Dividing by 3 undoes the multiplication by 3.
w^{2}-4w=-\frac{168}{3}
Divide -12 by 3.
w^{2}-4w=-56
Divide -168 by 3.
w^{2}-4w+\left(-2\right)^{2}=-56+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-4w+4=-56+4
Square -2.
w^{2}-4w+4=-52
Add -56 to 4.
\left(w-2\right)^{2}=-52
Factor w^{2}-4w+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-2\right)^{2}}=\sqrt{-52}
Take the square root of both sides of the equation.
w-2=2\sqrt{13}i w-2=-2\sqrt{13}i
Simplify.
w=2+2\sqrt{13}i w=-2\sqrt{13}i+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}