Solve for w
w = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
w=-4
Share
Copied to clipboard
3w^{2}+17w=-20
Add 17w to both sides.
3w^{2}+17w+20=0
Add 20 to both sides.
a+b=17 ab=3\times 20=60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3w^{2}+aw+bw+20. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=5 b=12
The solution is the pair that gives sum 17.
\left(3w^{2}+5w\right)+\left(12w+20\right)
Rewrite 3w^{2}+17w+20 as \left(3w^{2}+5w\right)+\left(12w+20\right).
w\left(3w+5\right)+4\left(3w+5\right)
Factor out w in the first and 4 in the second group.
\left(3w+5\right)\left(w+4\right)
Factor out common term 3w+5 by using distributive property.
w=-\frac{5}{3} w=-4
To find equation solutions, solve 3w+5=0 and w+4=0.
3w^{2}+17w=-20
Add 17w to both sides.
3w^{2}+17w+20=0
Add 20 to both sides.
w=\frac{-17±\sqrt{17^{2}-4\times 3\times 20}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 17 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-17±\sqrt{289-4\times 3\times 20}}{2\times 3}
Square 17.
w=\frac{-17±\sqrt{289-12\times 20}}{2\times 3}
Multiply -4 times 3.
w=\frac{-17±\sqrt{289-240}}{2\times 3}
Multiply -12 times 20.
w=\frac{-17±\sqrt{49}}{2\times 3}
Add 289 to -240.
w=\frac{-17±7}{2\times 3}
Take the square root of 49.
w=\frac{-17±7}{6}
Multiply 2 times 3.
w=-\frac{10}{6}
Now solve the equation w=\frac{-17±7}{6} when ± is plus. Add -17 to 7.
w=-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
w=-\frac{24}{6}
Now solve the equation w=\frac{-17±7}{6} when ± is minus. Subtract 7 from -17.
w=-4
Divide -24 by 6.
w=-\frac{5}{3} w=-4
The equation is now solved.
3w^{2}+17w=-20
Add 17w to both sides.
\frac{3w^{2}+17w}{3}=-\frac{20}{3}
Divide both sides by 3.
w^{2}+\frac{17}{3}w=-\frac{20}{3}
Dividing by 3 undoes the multiplication by 3.
w^{2}+\frac{17}{3}w+\left(\frac{17}{6}\right)^{2}=-\frac{20}{3}+\left(\frac{17}{6}\right)^{2}
Divide \frac{17}{3}, the coefficient of the x term, by 2 to get \frac{17}{6}. Then add the square of \frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+\frac{17}{3}w+\frac{289}{36}=-\frac{20}{3}+\frac{289}{36}
Square \frac{17}{6} by squaring both the numerator and the denominator of the fraction.
w^{2}+\frac{17}{3}w+\frac{289}{36}=\frac{49}{36}
Add -\frac{20}{3} to \frac{289}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(w+\frac{17}{6}\right)^{2}=\frac{49}{36}
Factor w^{2}+\frac{17}{3}w+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+\frac{17}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
w+\frac{17}{6}=\frac{7}{6} w+\frac{17}{6}=-\frac{7}{6}
Simplify.
w=-\frac{5}{3} w=-4
Subtract \frac{17}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}