Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

3v^{2}-15-6v=0
Subtract 6v from both sides.
3v^{2}-6v-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-15\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -6 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
v=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-15\right)}}{2\times 3}
Square -6.
v=\frac{-\left(-6\right)±\sqrt{36-12\left(-15\right)}}{2\times 3}
Multiply -4 times 3.
v=\frac{-\left(-6\right)±\sqrt{36+180}}{2\times 3}
Multiply -12 times -15.
v=\frac{-\left(-6\right)±\sqrt{216}}{2\times 3}
Add 36 to 180.
v=\frac{-\left(-6\right)±6\sqrt{6}}{2\times 3}
Take the square root of 216.
v=\frac{6±6\sqrt{6}}{2\times 3}
The opposite of -6 is 6.
v=\frac{6±6\sqrt{6}}{6}
Multiply 2 times 3.
v=\frac{6\sqrt{6}+6}{6}
Now solve the equation v=\frac{6±6\sqrt{6}}{6} when ± is plus. Add 6 to 6\sqrt{6}.
v=\sqrt{6}+1
Divide 6+6\sqrt{6} by 6.
v=\frac{6-6\sqrt{6}}{6}
Now solve the equation v=\frac{6±6\sqrt{6}}{6} when ± is minus. Subtract 6\sqrt{6} from 6.
v=1-\sqrt{6}
Divide 6-6\sqrt{6} by 6.
v=\sqrt{6}+1 v=1-\sqrt{6}
The equation is now solved.
3v^{2}-15-6v=0
Subtract 6v from both sides.
3v^{2}-6v=15
Add 15 to both sides. Anything plus zero gives itself.
\frac{3v^{2}-6v}{3}=\frac{15}{3}
Divide both sides by 3.
v^{2}+\left(-\frac{6}{3}\right)v=\frac{15}{3}
Dividing by 3 undoes the multiplication by 3.
v^{2}-2v=\frac{15}{3}
Divide -6 by 3.
v^{2}-2v=5
Divide 15 by 3.
v^{2}-2v+1=5+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
v^{2}-2v+1=6
Add 5 to 1.
\left(v-1\right)^{2}=6
Factor v^{2}-2v+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(v-1\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
v-1=\sqrt{6} v-1=-\sqrt{6}
Simplify.
v=\sqrt{6}+1 v=1-\sqrt{6}
Add 1 to both sides of the equation.