Factor
\left(v+6\right)\left(3v+10\right)
Evaluate
\left(v+6\right)\left(3v+10\right)
Share
Copied to clipboard
a+b=28 ab=3\times 60=180
Factor the expression by grouping. First, the expression needs to be rewritten as 3v^{2}+av+bv+60. To find a and b, set up a system to be solved.
1,180 2,90 3,60 4,45 5,36 6,30 9,20 10,18 12,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 180.
1+180=181 2+90=92 3+60=63 4+45=49 5+36=41 6+30=36 9+20=29 10+18=28 12+15=27
Calculate the sum for each pair.
a=10 b=18
The solution is the pair that gives sum 28.
\left(3v^{2}+10v\right)+\left(18v+60\right)
Rewrite 3v^{2}+28v+60 as \left(3v^{2}+10v\right)+\left(18v+60\right).
v\left(3v+10\right)+6\left(3v+10\right)
Factor out v in the first and 6 in the second group.
\left(3v+10\right)\left(v+6\right)
Factor out common term 3v+10 by using distributive property.
3v^{2}+28v+60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-28±\sqrt{28^{2}-4\times 3\times 60}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-28±\sqrt{784-4\times 3\times 60}}{2\times 3}
Square 28.
v=\frac{-28±\sqrt{784-12\times 60}}{2\times 3}
Multiply -4 times 3.
v=\frac{-28±\sqrt{784-720}}{2\times 3}
Multiply -12 times 60.
v=\frac{-28±\sqrt{64}}{2\times 3}
Add 784 to -720.
v=\frac{-28±8}{2\times 3}
Take the square root of 64.
v=\frac{-28±8}{6}
Multiply 2 times 3.
v=-\frac{20}{6}
Now solve the equation v=\frac{-28±8}{6} when ± is plus. Add -28 to 8.
v=-\frac{10}{3}
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
v=-\frac{36}{6}
Now solve the equation v=\frac{-28±8}{6} when ± is minus. Subtract 8 from -28.
v=-6
Divide -36 by 6.
3v^{2}+28v+60=3\left(v-\left(-\frac{10}{3}\right)\right)\left(v-\left(-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{10}{3} for x_{1} and -6 for x_{2}.
3v^{2}+28v+60=3\left(v+\frac{10}{3}\right)\left(v+6\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3v^{2}+28v+60=3\times \frac{3v+10}{3}\left(v+6\right)
Add \frac{10}{3} to v by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3v^{2}+28v+60=\left(3v+10\right)\left(v+6\right)
Cancel out 3, the greatest common factor in 3 and 3.
x ^ 2 +\frac{28}{3}x +20 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = -\frac{28}{3} rs = 20
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{14}{3} - u s = -\frac{14}{3} + u
Two numbers r and s sum up to -\frac{28}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{28}{3} = -\frac{14}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{14}{3} - u) (-\frac{14}{3} + u) = 20
To solve for unknown quantity u, substitute these in the product equation rs = 20
\frac{196}{9} - u^2 = 20
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 20-\frac{196}{9} = -\frac{16}{9}
Simplify the expression by subtracting \frac{196}{9} on both sides
u^2 = \frac{16}{9} u = \pm\sqrt{\frac{16}{9}} = \pm \frac{4}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{14}{3} - \frac{4}{3} = -6.000 s = -\frac{14}{3} + \frac{4}{3} = -3.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}