Factor
\left(t-7\right)\left(3t+1\right)
Evaluate
\left(t-7\right)\left(3t+1\right)
Share
Copied to clipboard
a+b=-20 ab=3\left(-7\right)=-21
Factor the expression by grouping. First, the expression needs to be rewritten as 3t^{2}+at+bt-7. To find a and b, set up a system to be solved.
1,-21 3,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -21.
1-21=-20 3-7=-4
Calculate the sum for each pair.
a=-21 b=1
The solution is the pair that gives sum -20.
\left(3t^{2}-21t\right)+\left(t-7\right)
Rewrite 3t^{2}-20t-7 as \left(3t^{2}-21t\right)+\left(t-7\right).
3t\left(t-7\right)+t-7
Factor out 3t in 3t^{2}-21t.
\left(t-7\right)\left(3t+1\right)
Factor out common term t-7 by using distributive property.
3t^{2}-20t-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3\left(-7\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-20\right)±\sqrt{400-4\times 3\left(-7\right)}}{2\times 3}
Square -20.
t=\frac{-\left(-20\right)±\sqrt{400-12\left(-7\right)}}{2\times 3}
Multiply -4 times 3.
t=\frac{-\left(-20\right)±\sqrt{400+84}}{2\times 3}
Multiply -12 times -7.
t=\frac{-\left(-20\right)±\sqrt{484}}{2\times 3}
Add 400 to 84.
t=\frac{-\left(-20\right)±22}{2\times 3}
Take the square root of 484.
t=\frac{20±22}{2\times 3}
The opposite of -20 is 20.
t=\frac{20±22}{6}
Multiply 2 times 3.
t=\frac{42}{6}
Now solve the equation t=\frac{20±22}{6} when ± is plus. Add 20 to 22.
t=7
Divide 42 by 6.
t=-\frac{2}{6}
Now solve the equation t=\frac{20±22}{6} when ± is minus. Subtract 22 from 20.
t=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
3t^{2}-20t-7=3\left(t-7\right)\left(t-\left(-\frac{1}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7 for x_{1} and -\frac{1}{3} for x_{2}.
3t^{2}-20t-7=3\left(t-7\right)\left(t+\frac{1}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
3t^{2}-20t-7=3\left(t-7\right)\times \frac{3t+1}{3}
Add \frac{1}{3} to t by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
3t^{2}-20t-7=\left(t-7\right)\left(3t+1\right)
Cancel out 3, the greatest common factor in 3 and 3.
x ^ 2 -\frac{20}{3}x -\frac{7}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = \frac{20}{3} rs = -\frac{7}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{10}{3} - u s = \frac{10}{3} + u
Two numbers r and s sum up to \frac{20}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{20}{3} = \frac{10}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{10}{3} - u) (\frac{10}{3} + u) = -\frac{7}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{7}{3}
\frac{100}{9} - u^2 = -\frac{7}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{7}{3}-\frac{100}{9} = -\frac{121}{9}
Simplify the expression by subtracting \frac{100}{9} on both sides
u^2 = \frac{121}{9} u = \pm\sqrt{\frac{121}{9}} = \pm \frac{11}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{10}{3} - \frac{11}{3} = -0.333 s = \frac{10}{3} + \frac{11}{3} = 7
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}