Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}=\frac{225}{3}
Divide both sides by 3.
t^{2}=75
Divide 225 by 3 to get 75.
t=5\sqrt{3} t=-5\sqrt{3}
Take the square root of both sides of the equation.
t^{2}=\frac{225}{3}
Divide both sides by 3.
t^{2}=75
Divide 225 by 3 to get 75.
t^{2}-75=0
Subtract 75 from both sides.
t=\frac{0±\sqrt{0^{2}-4\left(-75\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-75\right)}}{2}
Square 0.
t=\frac{0±\sqrt{300}}{2}
Multiply -4 times -75.
t=\frac{0±10\sqrt{3}}{2}
Take the square root of 300.
t=5\sqrt{3}
Now solve the equation t=\frac{0±10\sqrt{3}}{2} when ± is plus.
t=-5\sqrt{3}
Now solve the equation t=\frac{0±10\sqrt{3}}{2} when ± is minus.
t=5\sqrt{3} t=-5\sqrt{3}
The equation is now solved.