Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3t^{2}+24t+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-24±\sqrt{24^{2}-4\times 3}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-24±\sqrt{576-4\times 3}}{2\times 3}
Square 24.
t=\frac{-24±\sqrt{576-12}}{2\times 3}
Multiply -4 times 3.
t=\frac{-24±\sqrt{564}}{2\times 3}
Add 576 to -12.
t=\frac{-24±2\sqrt{141}}{2\times 3}
Take the square root of 564.
t=\frac{-24±2\sqrt{141}}{6}
Multiply 2 times 3.
t=\frac{2\sqrt{141}-24}{6}
Now solve the equation t=\frac{-24±2\sqrt{141}}{6} when ± is plus. Add -24 to 2\sqrt{141}.
t=\frac{\sqrt{141}}{3}-4
Divide -24+2\sqrt{141} by 6.
t=\frac{-2\sqrt{141}-24}{6}
Now solve the equation t=\frac{-24±2\sqrt{141}}{6} when ± is minus. Subtract 2\sqrt{141} from -24.
t=-\frac{\sqrt{141}}{3}-4
Divide -24-2\sqrt{141} by 6.
3t^{2}+24t+1=3\left(t-\left(\frac{\sqrt{141}}{3}-4\right)\right)\left(t-\left(-\frac{\sqrt{141}}{3}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4+\frac{\sqrt{141}}{3} for x_{1} and -4-\frac{\sqrt{141}}{3} for x_{2}.
x ^ 2 +8x +\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = -8 rs = \frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -4 - u s = -4 + u
Two numbers r and s sum up to -8 exactly when the average of the two numbers is \frac{1}{2}*-8 = -4. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-4 - u) (-4 + u) = \frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{3}
16 - u^2 = \frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{3}-16 = -\frac{47}{3}
Simplify the expression by subtracting 16 on both sides
u^2 = \frac{47}{3} u = \pm\sqrt{\frac{47}{3}} = \pm \frac{\sqrt{47}}{\sqrt{3}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-4 - \frac{\sqrt{47}}{\sqrt{3}} = -7.958 s = -4 + \frac{\sqrt{47}}{\sqrt{3}} = -0.042
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.