Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\left(3+12i\right)t=4
Combine 3t and 12it to get \left(3+12i\right)t.
t=\frac{4}{3+12i}
Divide both sides by 3+12i.
t=\frac{4\left(3-12i\right)}{\left(3+12i\right)\left(3-12i\right)}
Multiply both numerator and denominator of \frac{4}{3+12i} by the complex conjugate of the denominator, 3-12i.
t=\frac{4\left(3-12i\right)}{3^{2}-12^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
t=\frac{4\left(3-12i\right)}{153}
By definition, i^{2} is -1. Calculate the denominator.
t=\frac{4\times 3+4\times \left(-12i\right)}{153}
Multiply 4 times 3-12i.
t=\frac{12-48i}{153}
Do the multiplications in 4\times 3+4\times \left(-12i\right).
t=\frac{4}{51}-\frac{16}{51}i
Divide 12-48i by 153 to get \frac{4}{51}-\frac{16}{51}i.