Solve for s
s=\frac{\sqrt{69}}{6}+\frac{3}{2}\approx 2.88443731
s=-\frac{\sqrt{69}}{6}+\frac{3}{2}\approx 0.11556269
Share
Copied to clipboard
3s^{2}-9s+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -9 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\left(-9\right)±\sqrt{81-4\times 3}}{2\times 3}
Square -9.
s=\frac{-\left(-9\right)±\sqrt{81-12}}{2\times 3}
Multiply -4 times 3.
s=\frac{-\left(-9\right)±\sqrt{69}}{2\times 3}
Add 81 to -12.
s=\frac{9±\sqrt{69}}{2\times 3}
The opposite of -9 is 9.
s=\frac{9±\sqrt{69}}{6}
Multiply 2 times 3.
s=\frac{\sqrt{69}+9}{6}
Now solve the equation s=\frac{9±\sqrt{69}}{6} when ± is plus. Add 9 to \sqrt{69}.
s=\frac{\sqrt{69}}{6}+\frac{3}{2}
Divide 9+\sqrt{69} by 6.
s=\frac{9-\sqrt{69}}{6}
Now solve the equation s=\frac{9±\sqrt{69}}{6} when ± is minus. Subtract \sqrt{69} from 9.
s=-\frac{\sqrt{69}}{6}+\frac{3}{2}
Divide 9-\sqrt{69} by 6.
s=\frac{\sqrt{69}}{6}+\frac{3}{2} s=-\frac{\sqrt{69}}{6}+\frac{3}{2}
The equation is now solved.
3s^{2}-9s+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3s^{2}-9s+1-1=-1
Subtract 1 from both sides of the equation.
3s^{2}-9s=-1
Subtracting 1 from itself leaves 0.
\frac{3s^{2}-9s}{3}=-\frac{1}{3}
Divide both sides by 3.
s^{2}+\left(-\frac{9}{3}\right)s=-\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
s^{2}-3s=-\frac{1}{3}
Divide -9 by 3.
s^{2}-3s+\left(-\frac{3}{2}\right)^{2}=-\frac{1}{3}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}-3s+\frac{9}{4}=-\frac{1}{3}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
s^{2}-3s+\frac{9}{4}=\frac{23}{12}
Add -\frac{1}{3} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(s-\frac{3}{2}\right)^{2}=\frac{23}{12}
Factor s^{2}-3s+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-\frac{3}{2}\right)^{2}}=\sqrt{\frac{23}{12}}
Take the square root of both sides of the equation.
s-\frac{3}{2}=\frac{\sqrt{69}}{6} s-\frac{3}{2}=-\frac{\sqrt{69}}{6}
Simplify.
s=\frac{\sqrt{69}}{6}+\frac{3}{2} s=-\frac{\sqrt{69}}{6}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.
x ^ 2 -3x +\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = 3 rs = \frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{2} - u s = \frac{3}{2} + u
Two numbers r and s sum up to 3 exactly when the average of the two numbers is \frac{1}{2}*3 = \frac{3}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{2} - u) (\frac{3}{2} + u) = \frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{3}
\frac{9}{4} - u^2 = \frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{3}-\frac{9}{4} = -\frac{23}{12}
Simplify the expression by subtracting \frac{9}{4} on both sides
u^2 = \frac{23}{12} u = \pm\sqrt{\frac{23}{12}} = \pm \frac{\sqrt{23}}{\sqrt{12}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{2} - \frac{\sqrt{23}}{\sqrt{12}} = 0.116 s = \frac{3}{2} + \frac{\sqrt{23}}{\sqrt{12}} = 2.884
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}