Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3n^{2}+n-122=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-1±\sqrt{1^{2}-4\times 3\left(-122\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-1±\sqrt{1-4\times 3\left(-122\right)}}{2\times 3}
Square 1.
n=\frac{-1±\sqrt{1-12\left(-122\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-1±\sqrt{1+1464}}{2\times 3}
Multiply -12 times -122.
n=\frac{-1±\sqrt{1465}}{2\times 3}
Add 1 to 1464.
n=\frac{-1±\sqrt{1465}}{6}
Multiply 2 times 3.
n=\frac{\sqrt{1465}-1}{6}
Now solve the equation n=\frac{-1±\sqrt{1465}}{6} when ± is plus. Add -1 to \sqrt{1465}.
n=\frac{-\sqrt{1465}-1}{6}
Now solve the equation n=\frac{-1±\sqrt{1465}}{6} when ± is minus. Subtract \sqrt{1465} from -1.
3n^{2}+n-122=3\left(n-\frac{\sqrt{1465}-1}{6}\right)\left(n-\frac{-\sqrt{1465}-1}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{1465}}{6} for x_{1} and \frac{-1-\sqrt{1465}}{6} for x_{2}.
x ^ 2 +\frac{1}{3}x -\frac{122}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = -\frac{1}{3} rs = -\frac{122}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{6} - u s = -\frac{1}{6} + u
Two numbers r and s sum up to -\frac{1}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{3} = -\frac{1}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{6} - u) (-\frac{1}{6} + u) = -\frac{122}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{122}{3}
\frac{1}{36} - u^2 = -\frac{122}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{122}{3}-\frac{1}{36} = -\frac{1465}{36}
Simplify the expression by subtracting \frac{1}{36} on both sides
u^2 = \frac{1465}{36} u = \pm\sqrt{\frac{1465}{36}} = \pm \frac{\sqrt{1465}}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{6} - \frac{\sqrt{1465}}{6} = -6.546 s = -\frac{1}{6} + \frac{\sqrt{1465}}{6} = 6.213
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.