Solve for n
n=\frac{\sqrt{37}-7}{6}\approx -0.152872912
n=\frac{-\sqrt{37}-7}{6}\approx -2.180460422
Share
Copied to clipboard
3n^{2}+7n-5=-6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3n^{2}+7n-5-\left(-6\right)=-6-\left(-6\right)
Add 6 to both sides of the equation.
3n^{2}+7n-5-\left(-6\right)=0
Subtracting -6 from itself leaves 0.
3n^{2}+7n+1=0
Subtract -6 from -5.
n=\frac{-7±\sqrt{7^{2}-4\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 7 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-7±\sqrt{49-4\times 3}}{2\times 3}
Square 7.
n=\frac{-7±\sqrt{49-12}}{2\times 3}
Multiply -4 times 3.
n=\frac{-7±\sqrt{37}}{2\times 3}
Add 49 to -12.
n=\frac{-7±\sqrt{37}}{6}
Multiply 2 times 3.
n=\frac{\sqrt{37}-7}{6}
Now solve the equation n=\frac{-7±\sqrt{37}}{6} when ± is plus. Add -7 to \sqrt{37}.
n=\frac{-\sqrt{37}-7}{6}
Now solve the equation n=\frac{-7±\sqrt{37}}{6} when ± is minus. Subtract \sqrt{37} from -7.
n=\frac{\sqrt{37}-7}{6} n=\frac{-\sqrt{37}-7}{6}
The equation is now solved.
3n^{2}+7n-5=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3n^{2}+7n-5-\left(-5\right)=-6-\left(-5\right)
Add 5 to both sides of the equation.
3n^{2}+7n=-6-\left(-5\right)
Subtracting -5 from itself leaves 0.
3n^{2}+7n=-1
Subtract -5 from -6.
\frac{3n^{2}+7n}{3}=-\frac{1}{3}
Divide both sides by 3.
n^{2}+\frac{7}{3}n=-\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}+\frac{7}{3}n+\left(\frac{7}{6}\right)^{2}=-\frac{1}{3}+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{7}{3}n+\frac{49}{36}=-\frac{1}{3}+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{7}{3}n+\frac{49}{36}=\frac{37}{36}
Add -\frac{1}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{7}{6}\right)^{2}=\frac{37}{36}
Factor n^{2}+\frac{7}{3}n+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{7}{6}\right)^{2}}=\sqrt{\frac{37}{36}}
Take the square root of both sides of the equation.
n+\frac{7}{6}=\frac{\sqrt{37}}{6} n+\frac{7}{6}=-\frac{\sqrt{37}}{6}
Simplify.
n=\frac{\sqrt{37}-7}{6} n=\frac{-\sqrt{37}-7}{6}
Subtract \frac{7}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}