Factor
3\left(n-24\right)\left(n+225\right)
Evaluate
3\left(n-24\right)\left(n+225\right)
Share
Copied to clipboard
3\left(n^{2}+201n-5400\right)
Factor out 3.
a+b=201 ab=1\left(-5400\right)=-5400
Consider n^{2}+201n-5400. Factor the expression by grouping. First, the expression needs to be rewritten as n^{2}+an+bn-5400. To find a and b, set up a system to be solved.
-1,5400 -2,2700 -3,1800 -4,1350 -5,1080 -6,900 -8,675 -9,600 -10,540 -12,450 -15,360 -18,300 -20,270 -24,225 -25,216 -27,200 -30,180 -36,150 -40,135 -45,120 -50,108 -54,100 -60,90 -72,75
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -5400.
-1+5400=5399 -2+2700=2698 -3+1800=1797 -4+1350=1346 -5+1080=1075 -6+900=894 -8+675=667 -9+600=591 -10+540=530 -12+450=438 -15+360=345 -18+300=282 -20+270=250 -24+225=201 -25+216=191 -27+200=173 -30+180=150 -36+150=114 -40+135=95 -45+120=75 -50+108=58 -54+100=46 -60+90=30 -72+75=3
Calculate the sum for each pair.
a=-24 b=225
The solution is the pair that gives sum 201.
\left(n^{2}-24n\right)+\left(225n-5400\right)
Rewrite n^{2}+201n-5400 as \left(n^{2}-24n\right)+\left(225n-5400\right).
n\left(n-24\right)+225\left(n-24\right)
Factor out n in the first and 225 in the second group.
\left(n-24\right)\left(n+225\right)
Factor out common term n-24 by using distributive property.
3\left(n-24\right)\left(n+225\right)
Rewrite the complete factored expression.
3n^{2}+603n-16200=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-603±\sqrt{603^{2}-4\times 3\left(-16200\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-603±\sqrt{363609-4\times 3\left(-16200\right)}}{2\times 3}
Square 603.
n=\frac{-603±\sqrt{363609-12\left(-16200\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-603±\sqrt{363609+194400}}{2\times 3}
Multiply -12 times -16200.
n=\frac{-603±\sqrt{558009}}{2\times 3}
Add 363609 to 194400.
n=\frac{-603±747}{2\times 3}
Take the square root of 558009.
n=\frac{-603±747}{6}
Multiply 2 times 3.
n=\frac{144}{6}
Now solve the equation n=\frac{-603±747}{6} when ± is plus. Add -603 to 747.
n=24
Divide 144 by 6.
n=-\frac{1350}{6}
Now solve the equation n=\frac{-603±747}{6} when ± is minus. Subtract 747 from -603.
n=-225
Divide -1350 by 6.
3n^{2}+603n-16200=3\left(n-24\right)\left(n-\left(-225\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 24 for x_{1} and -225 for x_{2}.
3n^{2}+603n-16200=3\left(n-24\right)\left(n+225\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
x ^ 2 +201x -5400 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = -201 rs = -5400
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{201}{2} - u s = -\frac{201}{2} + u
Two numbers r and s sum up to -201 exactly when the average of the two numbers is \frac{1}{2}*-201 = -\frac{201}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{201}{2} - u) (-\frac{201}{2} + u) = -5400
To solve for unknown quantity u, substitute these in the product equation rs = -5400
\frac{40401}{4} - u^2 = -5400
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -5400-\frac{40401}{4} = -\frac{62001}{4}
Simplify the expression by subtracting \frac{40401}{4} on both sides
u^2 = \frac{62001}{4} u = \pm\sqrt{\frac{62001}{4}} = \pm \frac{249}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{201}{2} - \frac{249}{2} = -225 s = -\frac{201}{2} + \frac{249}{2} = 24
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}