Solve for m
m = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
m=-3
Share
Copied to clipboard
3m^{2}+16m=-21
Add 16m to both sides.
3m^{2}+16m+21=0
Add 21 to both sides.
a+b=16 ab=3\times 21=63
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3m^{2}+am+bm+21. To find a and b, set up a system to be solved.
1,63 3,21 7,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 63.
1+63=64 3+21=24 7+9=16
Calculate the sum for each pair.
a=7 b=9
The solution is the pair that gives sum 16.
\left(3m^{2}+7m\right)+\left(9m+21\right)
Rewrite 3m^{2}+16m+21 as \left(3m^{2}+7m\right)+\left(9m+21\right).
m\left(3m+7\right)+3\left(3m+7\right)
Factor out m in the first and 3 in the second group.
\left(3m+7\right)\left(m+3\right)
Factor out common term 3m+7 by using distributive property.
m=-\frac{7}{3} m=-3
To find equation solutions, solve 3m+7=0 and m+3=0.
3m^{2}+16m=-21
Add 16m to both sides.
3m^{2}+16m+21=0
Add 21 to both sides.
m=\frac{-16±\sqrt{16^{2}-4\times 3\times 21}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 16 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-16±\sqrt{256-4\times 3\times 21}}{2\times 3}
Square 16.
m=\frac{-16±\sqrt{256-12\times 21}}{2\times 3}
Multiply -4 times 3.
m=\frac{-16±\sqrt{256-252}}{2\times 3}
Multiply -12 times 21.
m=\frac{-16±\sqrt{4}}{2\times 3}
Add 256 to -252.
m=\frac{-16±2}{2\times 3}
Take the square root of 4.
m=\frac{-16±2}{6}
Multiply 2 times 3.
m=-\frac{14}{6}
Now solve the equation m=\frac{-16±2}{6} when ± is plus. Add -16 to 2.
m=-\frac{7}{3}
Reduce the fraction \frac{-14}{6} to lowest terms by extracting and canceling out 2.
m=-\frac{18}{6}
Now solve the equation m=\frac{-16±2}{6} when ± is minus. Subtract 2 from -16.
m=-3
Divide -18 by 6.
m=-\frac{7}{3} m=-3
The equation is now solved.
3m^{2}+16m=-21
Add 16m to both sides.
\frac{3m^{2}+16m}{3}=-\frac{21}{3}
Divide both sides by 3.
m^{2}+\frac{16}{3}m=-\frac{21}{3}
Dividing by 3 undoes the multiplication by 3.
m^{2}+\frac{16}{3}m=-7
Divide -21 by 3.
m^{2}+\frac{16}{3}m+\left(\frac{8}{3}\right)^{2}=-7+\left(\frac{8}{3}\right)^{2}
Divide \frac{16}{3}, the coefficient of the x term, by 2 to get \frac{8}{3}. Then add the square of \frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{16}{3}m+\frac{64}{9}=-7+\frac{64}{9}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{16}{3}m+\frac{64}{9}=\frac{1}{9}
Add -7 to \frac{64}{9}.
\left(m+\frac{8}{3}\right)^{2}=\frac{1}{9}
Factor m^{2}+\frac{16}{3}m+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{8}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
m+\frac{8}{3}=\frac{1}{3} m+\frac{8}{3}=-\frac{1}{3}
Simplify.
m=-\frac{7}{3} m=-3
Subtract \frac{8}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}