Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

3d-\frac{1}{2}\times 2d-\frac{1}{2}\left(-4\right)=-\frac{3}{4}\left(d+4\right)
Use the distributive property to multiply -\frac{1}{2} by 2d-4.
3d-d-\frac{1}{2}\left(-4\right)=-\frac{3}{4}\left(d+4\right)
Cancel out 2 and 2.
3d-d+\frac{-\left(-4\right)}{2}=-\frac{3}{4}\left(d+4\right)
Express -\frac{1}{2}\left(-4\right) as a single fraction.
3d-d+\frac{4}{2}=-\frac{3}{4}\left(d+4\right)
Multiply -1 and -4 to get 4.
3d-d+2=-\frac{3}{4}\left(d+4\right)
Divide 4 by 2 to get 2.
2d+2=-\frac{3}{4}\left(d+4\right)
Combine 3d and -d to get 2d.
2d+2=-\frac{3}{4}d-\frac{3}{4}\times 4
Use the distributive property to multiply -\frac{3}{4} by d+4.
2d+2=-\frac{3}{4}d-3
Cancel out 4 and 4.
2d+2+\frac{3}{4}d=-3
Add \frac{3}{4}d to both sides.
\frac{11}{4}d+2=-3
Combine 2d and \frac{3}{4}d to get \frac{11}{4}d.
\frac{11}{4}d=-3-2
Subtract 2 from both sides.
\frac{11}{4}d=-5
Subtract 2 from -3 to get -5.
d=-5\times \frac{4}{11}
Multiply both sides by \frac{4}{11}, the reciprocal of \frac{11}{4}.
d=\frac{-5\times 4}{11}
Express -5\times \frac{4}{11} as a single fraction.
d=\frac{-20}{11}
Multiply -5 and 4 to get -20.
d=-\frac{20}{11}
Fraction \frac{-20}{11} can be rewritten as -\frac{20}{11} by extracting the negative sign.