Solve for d
d = -\frac{20}{11} = -1\frac{9}{11} \approx -1.818181818
Share
Copied to clipboard
3d-\frac{1}{2}\times 2d-\frac{1}{2}\left(-4\right)=-\frac{3}{4}\left(d+4\right)
Use the distributive property to multiply -\frac{1}{2} by 2d-4.
3d-d-\frac{1}{2}\left(-4\right)=-\frac{3}{4}\left(d+4\right)
Cancel out 2 and 2.
3d-d+\frac{-\left(-4\right)}{2}=-\frac{3}{4}\left(d+4\right)
Express -\frac{1}{2}\left(-4\right) as a single fraction.
3d-d+\frac{4}{2}=-\frac{3}{4}\left(d+4\right)
Multiply -1 and -4 to get 4.
3d-d+2=-\frac{3}{4}\left(d+4\right)
Divide 4 by 2 to get 2.
2d+2=-\frac{3}{4}\left(d+4\right)
Combine 3d and -d to get 2d.
2d+2=-\frac{3}{4}d-\frac{3}{4}\times 4
Use the distributive property to multiply -\frac{3}{4} by d+4.
2d+2=-\frac{3}{4}d-3
Cancel out 4 and 4.
2d+2+\frac{3}{4}d=-3
Add \frac{3}{4}d to both sides.
\frac{11}{4}d+2=-3
Combine 2d and \frac{3}{4}d to get \frac{11}{4}d.
\frac{11}{4}d=-3-2
Subtract 2 from both sides.
\frac{11}{4}d=-5
Subtract 2 from -3 to get -5.
d=-5\times \frac{4}{11}
Multiply both sides by \frac{4}{11}, the reciprocal of \frac{11}{4}.
d=\frac{-5\times 4}{11}
Express -5\times \frac{4}{11} as a single fraction.
d=\frac{-20}{11}
Multiply -5 and 4 to get -20.
d=-\frac{20}{11}
Fraction \frac{-20}{11} can be rewritten as -\frac{20}{11} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}