Solve for d
d=7
d=-7
Share
Copied to clipboard
d^{2}-49=0
Divide both sides by 3.
\left(d-7\right)\left(d+7\right)=0
Consider d^{2}-49. Rewrite d^{2}-49 as d^{2}-7^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
d=7 d=-7
To find equation solutions, solve d-7=0 and d+7=0.
3d^{2}=147
Add 147 to both sides. Anything plus zero gives itself.
d^{2}=\frac{147}{3}
Divide both sides by 3.
d^{2}=49
Divide 147 by 3 to get 49.
d=7 d=-7
Take the square root of both sides of the equation.
3d^{2}-147=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
d=\frac{0±\sqrt{0^{2}-4\times 3\left(-147\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -147 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{0±\sqrt{-4\times 3\left(-147\right)}}{2\times 3}
Square 0.
d=\frac{0±\sqrt{-12\left(-147\right)}}{2\times 3}
Multiply -4 times 3.
d=\frac{0±\sqrt{1764}}{2\times 3}
Multiply -12 times -147.
d=\frac{0±42}{2\times 3}
Take the square root of 1764.
d=\frac{0±42}{6}
Multiply 2 times 3.
d=7
Now solve the equation d=\frac{0±42}{6} when ± is plus. Divide 42 by 6.
d=-7
Now solve the equation d=\frac{0±42}{6} when ± is minus. Divide -42 by 6.
d=7 d=-7
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}