Factor
3\left(b-1\right)\left(-6b^{2}-6b-5\right)b^{4}
Evaluate
3\left(5+b-6b^{3}\right)b^{4}
Share
Copied to clipboard
3\left(b^{5}+5b^{4}-6b^{7}\right)
Factor out 3.
b^{4}\left(b+5-6b^{3}\right)
Consider b^{5}+5b^{4}-6b^{7}. Factor out b^{4}.
\left(b-1\right)\left(-6b^{2}-6b-5\right)
Consider b+5-6b^{3}. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 5 and q divides the leading coefficient -6. One such root is 1. Factor the polynomial by dividing it by b-1.
3b^{4}\left(b-1\right)\left(-6b^{2}-6b-5\right)
Rewrite the complete factored expression. Polynomial -6b^{2}-6b-5 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}