Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{x-5y}{3\left(x^{2}-2\right)}\text{, }&x\neq -\sqrt{2}\text{ and }x\neq \sqrt{2}\\a\in \mathrm{C}\text{, }&\left(x=\sqrt{2}\text{ and }y=\frac{\sqrt{2}}{5}\right)\text{ or }\left(x=-\sqrt{2}\text{ and }y=-\frac{\sqrt{2}}{5}\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{x-5y}{3\left(x^{2}-2\right)}\text{, }&|x|\neq \sqrt{2}\\a\in \mathrm{R}\text{, }&\left(x=-\sqrt{2}\text{ and }y=-\frac{\sqrt{2}}{5}\right)\text{ or }\left(x=\sqrt{2}\text{ and }y=\frac{\sqrt{2}}{5}\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{60ay+72a^{2}+1}-1}{6a}\text{; }x=-\frac{\sqrt{60ay+72a^{2}+1}+1}{6a}\text{, }&a\neq 0\\x=5y\text{, }&a=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{60ay+72a^{2}+1}-1}{6a}\text{; }x=-\frac{\sqrt{60ay+72a^{2}+1}+1}{6a}\text{, }&a\neq 0\text{ and }\left(a\leq \frac{-\sqrt{25y^{2}-2}-5y}{12}\text{ or }|y|\leq \frac{\sqrt{2}}{5}\text{ or }a\geq \frac{\sqrt{25y^{2}-2}-5y}{12}\right)\\x=5y\text{, }&a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
3ax^{2}-5y-6a=-x
Subtract 6a from both sides.
3ax^{2}-6a=-x+5y
Add 5y to both sides.
\left(3x^{2}-6\right)a=-x+5y
Combine all terms containing a.
\left(3x^{2}-6\right)a=5y-x
The equation is in standard form.
\frac{\left(3x^{2}-6\right)a}{3x^{2}-6}=\frac{5y-x}{3x^{2}-6}
Divide both sides by 3x^{2}-6.
a=\frac{5y-x}{3x^{2}-6}
Dividing by 3x^{2}-6 undoes the multiplication by 3x^{2}-6.
a=\frac{5y-x}{3\left(x^{2}-2\right)}
Divide -x+5y by 3x^{2}-6.
3ax^{2}-5y-6a=-x
Subtract 6a from both sides.
3ax^{2}-6a=-x+5y
Add 5y to both sides.
\left(3x^{2}-6\right)a=-x+5y
Combine all terms containing a.
\left(3x^{2}-6\right)a=5y-x
The equation is in standard form.
\frac{\left(3x^{2}-6\right)a}{3x^{2}-6}=\frac{5y-x}{3x^{2}-6}
Divide both sides by 3x^{2}-6.
a=\frac{5y-x}{3x^{2}-6}
Dividing by 3x^{2}-6 undoes the multiplication by 3x^{2}-6.
a=\frac{5y-x}{3\left(x^{2}-2\right)}
Divide -x+5y by 3x^{2}-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}