Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(a^{4}-16b^{4}\right)
Factor out 3.
\left(a^{2}-4b^{2}\right)\left(a^{2}+4b^{2}\right)
Consider a^{4}-16b^{4}. Rewrite a^{4}-16b^{4} as \left(a^{2}\right)^{2}-\left(4b^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-2b\right)\left(a+2b\right)
Consider a^{2}-4b^{2}. Rewrite a^{2}-4b^{2} as a^{2}-\left(2b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
3\left(a-2b\right)\left(a+2b\right)\left(a^{2}+4b^{2}\right)
Rewrite the complete factored expression.