Evaluate
24\times \left(\frac{a}{b}\right)^{5}
Expand
24\times \left(\frac{a}{b}\right)^{5}
Share
Copied to clipboard
3a^{2}b\times 2^{3}a^{3}\left(b^{-2}\right)^{3}
Expand \left(2ab^{-2}\right)^{3}.
3a^{2}b\times 2^{3}a^{3}b^{-6}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
3a^{2}b\times 8a^{3}b^{-6}
Calculate 2 to the power of 3 and get 8.
24a^{2}ba^{3}b^{-6}
Multiply 3 and 8 to get 24.
24a^{5}bb^{-6}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
24a^{5}b^{-5}
To multiply powers of the same base, add their exponents. Add 1 and -6 to get -5.
3a^{2}b\times 2^{3}a^{3}\left(b^{-2}\right)^{3}
Expand \left(2ab^{-2}\right)^{3}.
3a^{2}b\times 2^{3}a^{3}b^{-6}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
3a^{2}b\times 8a^{3}b^{-6}
Calculate 2 to the power of 3 and get 8.
24a^{2}ba^{3}b^{-6}
Multiply 3 and 8 to get 24.
24a^{5}bb^{-6}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
24a^{5}b^{-5}
To multiply powers of the same base, add their exponents. Add 1 and -6 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}