Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(a^{2}-3a\right)
Factor out 3.
a\left(a-3\right)
Consider a^{2}-3a. Factor out a.
3a\left(a-3\right)
Rewrite the complete factored expression.
3a^{2}-9a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-9\right)±9}{2\times 3}
Take the square root of \left(-9\right)^{2}.
a=\frac{9±9}{2\times 3}
The opposite of -9 is 9.
a=\frac{9±9}{6}
Multiply 2 times 3.
a=\frac{18}{6}
Now solve the equation a=\frac{9±9}{6} when ± is plus. Add 9 to 9.
a=3
Divide 18 by 6.
a=\frac{0}{6}
Now solve the equation a=\frac{9±9}{6} when ± is minus. Subtract 9 from 9.
a=0
Divide 0 by 6.
3a^{2}-9a=3\left(a-3\right)a
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 0 for x_{2}.