Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

3a^{2}-2-4a\geq 0
Subtract 4a from both sides.
3a^{2}-2-4a=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -4 for b, and -2 for c in the quadratic formula.
a=\frac{4±2\sqrt{10}}{6}
Do the calculations.
a=\frac{\sqrt{10}+2}{3} a=\frac{2-\sqrt{10}}{3}
Solve the equation a=\frac{4±2\sqrt{10}}{6} when ± is plus and when ± is minus.
3\left(a-\frac{\sqrt{10}+2}{3}\right)\left(a-\frac{2-\sqrt{10}}{3}\right)\geq 0
Rewrite the inequality by using the obtained solutions.
a-\frac{\sqrt{10}+2}{3}\leq 0 a-\frac{2-\sqrt{10}}{3}\leq 0
For the product to be ≥0, a-\frac{\sqrt{10}+2}{3} and a-\frac{2-\sqrt{10}}{3} have to be both ≤0 or both ≥0. Consider the case when a-\frac{\sqrt{10}+2}{3} and a-\frac{2-\sqrt{10}}{3} are both ≤0.
a\leq \frac{2-\sqrt{10}}{3}
The solution satisfying both inequalities is a\leq \frac{2-\sqrt{10}}{3}.
a-\frac{2-\sqrt{10}}{3}\geq 0 a-\frac{\sqrt{10}+2}{3}\geq 0
Consider the case when a-\frac{\sqrt{10}+2}{3} and a-\frac{2-\sqrt{10}}{3} are both ≥0.
a\geq \frac{\sqrt{10}+2}{3}
The solution satisfying both inequalities is a\geq \frac{\sqrt{10}+2}{3}.
a\leq \frac{2-\sqrt{10}}{3}\text{; }a\geq \frac{\sqrt{10}+2}{3}
The final solution is the union of the obtained solutions.