Solve for a
a=6
a=0
Share
Copied to clipboard
a\left(3a-18\right)=0
Factor out a.
a=0 a=6
To find equation solutions, solve a=0 and 3a-18=0.
3a^{2}-18a=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -18 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-18\right)±18}{2\times 3}
Take the square root of \left(-18\right)^{2}.
a=\frac{18±18}{2\times 3}
The opposite of -18 is 18.
a=\frac{18±18}{6}
Multiply 2 times 3.
a=\frac{36}{6}
Now solve the equation a=\frac{18±18}{6} when ± is plus. Add 18 to 18.
a=6
Divide 36 by 6.
a=\frac{0}{6}
Now solve the equation a=\frac{18±18}{6} when ± is minus. Subtract 18 from 18.
a=0
Divide 0 by 6.
a=6 a=0
The equation is now solved.
3a^{2}-18a=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3a^{2}-18a}{3}=\frac{0}{3}
Divide both sides by 3.
a^{2}+\left(-\frac{18}{3}\right)a=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
a^{2}-6a=\frac{0}{3}
Divide -18 by 3.
a^{2}-6a=0
Divide 0 by 3.
a^{2}-6a+\left(-3\right)^{2}=\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-6a+9=9
Square -3.
\left(a-3\right)^{2}=9
Factor a^{2}-6a+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-3\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
a-3=3 a-3=-3
Simplify.
a=6 a=0
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}