Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{b}{3-7c}\text{, }&c\neq \frac{3}{7}\\a\in \mathrm{C}\text{, }&b=0\text{ and }c=\frac{3}{7}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{b}{3-7c}\text{, }&c\neq \frac{3}{7}\\a\in \mathrm{R}\text{, }&b=0\text{ and }c=\frac{3}{7}\end{matrix}\right.
Solve for b
b=a\left(7c-3\right)
Share
Copied to clipboard
3a+b=c\times 7a
Combine 2a and 5a to get 7a.
3a+b-c\times 7a=0
Subtract c\times 7a from both sides.
3a+b-7ca=0
Multiply -1 and 7 to get -7.
3a-7ca=-b
Subtract b from both sides. Anything subtracted from zero gives its negation.
\left(3-7c\right)a=-b
Combine all terms containing a.
\frac{\left(3-7c\right)a}{3-7c}=-\frac{b}{3-7c}
Divide both sides by 3-7c.
a=-\frac{b}{3-7c}
Dividing by 3-7c undoes the multiplication by 3-7c.
3a+b=c\times 7a
Combine 2a and 5a to get 7a.
3a+b-c\times 7a=0
Subtract c\times 7a from both sides.
3a+b-7ca=0
Multiply -1 and 7 to get -7.
3a-7ca=-b
Subtract b from both sides. Anything subtracted from zero gives its negation.
\left(3-7c\right)a=-b
Combine all terms containing a.
\frac{\left(3-7c\right)a}{3-7c}=-\frac{b}{3-7c}
Divide both sides by 3-7c.
a=-\frac{b}{3-7c}
Dividing by 3-7c undoes the multiplication by 3-7c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}