Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-90x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\left(-2\right)\times 3}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{8100-4\left(-2\right)\times 3}}{2\left(-2\right)}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100+8\times 3}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-90\right)±\sqrt{8100+24}}{2\left(-2\right)}
Multiply 8 times 3.
x=\frac{-\left(-90\right)±\sqrt{8124}}{2\left(-2\right)}
Add 8100 to 24.
x=\frac{-\left(-90\right)±2\sqrt{2031}}{2\left(-2\right)}
Take the square root of 8124.
x=\frac{90±2\sqrt{2031}}{2\left(-2\right)}
The opposite of -90 is 90.
x=\frac{90±2\sqrt{2031}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{2031}+90}{-4}
Now solve the equation x=\frac{90±2\sqrt{2031}}{-4} when ± is plus. Add 90 to 2\sqrt{2031}.
x=\frac{-\sqrt{2031}-45}{2}
Divide 90+2\sqrt{2031} by -4.
x=\frac{90-2\sqrt{2031}}{-4}
Now solve the equation x=\frac{90±2\sqrt{2031}}{-4} when ± is minus. Subtract 2\sqrt{2031} from 90.
x=\frac{\sqrt{2031}-45}{2}
Divide 90-2\sqrt{2031} by -4.
-2x^{2}-90x+3=-2\left(x-\frac{-\sqrt{2031}-45}{2}\right)\left(x-\frac{\sqrt{2031}-45}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-45-\sqrt{2031}}{2} for x_{1} and \frac{-45+\sqrt{2031}}{2} for x_{2}.