Solve for x
x = \frac{\sqrt{55} + 7}{2} \approx 7.208099244
x=\frac{7-\sqrt{55}}{2}\approx -0.208099244
Graph
Share
Copied to clipboard
-2x^{2}+14x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\left(-2\right)\times 3}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 14 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-2\right)\times 3}}{2\left(-2\right)}
Square 14.
x=\frac{-14±\sqrt{196+8\times 3}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-14±\sqrt{196+24}}{2\left(-2\right)}
Multiply 8 times 3.
x=\frac{-14±\sqrt{220}}{2\left(-2\right)}
Add 196 to 24.
x=\frac{-14±2\sqrt{55}}{2\left(-2\right)}
Take the square root of 220.
x=\frac{-14±2\sqrt{55}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{55}-14}{-4}
Now solve the equation x=\frac{-14±2\sqrt{55}}{-4} when ± is plus. Add -14 to 2\sqrt{55}.
x=\frac{7-\sqrt{55}}{2}
Divide -14+2\sqrt{55} by -4.
x=\frac{-2\sqrt{55}-14}{-4}
Now solve the equation x=\frac{-14±2\sqrt{55}}{-4} when ± is minus. Subtract 2\sqrt{55} from -14.
x=\frac{\sqrt{55}+7}{2}
Divide -14-2\sqrt{55} by -4.
x=\frac{7-\sqrt{55}}{2} x=\frac{\sqrt{55}+7}{2}
The equation is now solved.
-2x^{2}+14x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-2x^{2}+14x+3-3=-3
Subtract 3 from both sides of the equation.
-2x^{2}+14x=-3
Subtracting 3 from itself leaves 0.
\frac{-2x^{2}+14x}{-2}=-\frac{3}{-2}
Divide both sides by -2.
x^{2}+\frac{14}{-2}x=-\frac{3}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-7x=-\frac{3}{-2}
Divide 14 by -2.
x^{2}-7x=\frac{3}{2}
Divide -3 by -2.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\frac{3}{2}+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=\frac{3}{2}+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{55}{4}
Add \frac{3}{2} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{2}\right)^{2}=\frac{55}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{55}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{55}}{2} x-\frac{7}{2}=-\frac{\sqrt{55}}{2}
Simplify.
x=\frac{\sqrt{55}+7}{2} x=\frac{7-\sqrt{55}}{2}
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}