Solve for f (complex solution)
\left\{\begin{matrix}f=-\frac{\left(4x+5\right)^{-\frac{1}{2}}\left(\sqrt{x-1}-3\right)}{t}\text{, }&t\neq 0\text{ and }x\neq -\frac{5}{4}\\f\in \mathrm{C}\text{, }&x=10\text{ and }t=0\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}t=-\frac{\left(4x+5\right)^{-\frac{1}{2}}\left(\sqrt{x-1}-3\right)}{f}\text{, }&f\neq 0\text{ and }x\neq -\frac{5}{4}\\t\in \mathrm{C}\text{, }&x=10\text{ and }f=0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=-\frac{\sqrt{x-1}-3}{\sqrt{4x+5}t}\text{, }&t\neq 0\text{ and }x\geq 1\\f\in \mathrm{R}\text{, }&t=0\text{ and }x=10\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=-\frac{\sqrt{x-1}-3}{\sqrt{4x+5}f}\text{, }&f\neq 0\text{ and }x\geq 1\\t\in \mathrm{R}\text{, }&f=0\text{ and }x=10\end{matrix}\right.
Graph
Share
Copied to clipboard
\sqrt{4x+5}ft=3-\sqrt{x-1}
Swap sides so that all variable terms are on the left hand side.
\sqrt{4x+5}tf=-\sqrt{x-1}+3
The equation is in standard form.
\frac{\sqrt{4x+5}tf}{\sqrt{4x+5}t}=\frac{-\sqrt{x-1}+3}{\sqrt{4x+5}t}
Divide both sides by \sqrt{4x+5}t.
f=\frac{-\sqrt{x-1}+3}{\sqrt{4x+5}t}
Dividing by \sqrt{4x+5}t undoes the multiplication by \sqrt{4x+5}t.
f=\frac{\left(4x+5\right)^{-\frac{1}{2}}\left(-\sqrt{x-1}+3\right)}{t}
Divide 3-\sqrt{x-1} by \sqrt{4x+5}t.
\sqrt{4x+5}ft=3-\sqrt{x-1}
Swap sides so that all variable terms are on the left hand side.
\sqrt{4x+5}ft=-\sqrt{x-1}+3
The equation is in standard form.
\frac{\sqrt{4x+5}ft}{\sqrt{4x+5}f}=\frac{-\sqrt{x-1}+3}{\sqrt{4x+5}f}
Divide both sides by \sqrt{4x+5}f.
t=\frac{-\sqrt{x-1}+3}{\sqrt{4x+5}f}
Dividing by \sqrt{4x+5}f undoes the multiplication by \sqrt{4x+5}f.
t=\frac{\left(4x+5\right)^{-\frac{1}{2}}\left(-\sqrt{x-1}+3\right)}{f}
Divide 3-\sqrt{x-1} by \sqrt{4x+5}f.
\sqrt{4x+5}ft=3-\sqrt{x-1}
Swap sides so that all variable terms are on the left hand side.
\sqrt{4x+5}tf=-\sqrt{x-1}+3
The equation is in standard form.
\frac{\sqrt{4x+5}tf}{\sqrt{4x+5}t}=\frac{-\sqrt{x-1}+3}{\sqrt{4x+5}t}
Divide both sides by \sqrt{4x+5}t.
f=\frac{-\sqrt{x-1}+3}{\sqrt{4x+5}t}
Dividing by \sqrt{4x+5}t undoes the multiplication by \sqrt{4x+5}t.
\sqrt{4x+5}ft=3-\sqrt{x-1}
Swap sides so that all variable terms are on the left hand side.
\sqrt{4x+5}ft=-\sqrt{x-1}+3
The equation is in standard form.
\frac{\sqrt{4x+5}ft}{\sqrt{4x+5}f}=\frac{-\sqrt{x-1}+3}{\sqrt{4x+5}f}
Divide both sides by \sqrt{4x+5}f.
t=\frac{-\sqrt{x-1}+3}{\sqrt{4x+5}f}
Dividing by \sqrt{4x+5}f undoes the multiplication by \sqrt{4x+5}f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}