Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

3-\frac{7x+1}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
Factor 2x-4.
\frac{3\times 2\left(x-2\right)}{2\left(x-2\right)}-\frac{7x+1}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2\left(x-2\right)}{2\left(x-2\right)}.
\frac{3\times 2\left(x-2\right)-\left(7x+1\right)}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
Since \frac{3\times 2\left(x-2\right)}{2\left(x-2\right)} and \frac{7x+1}{2\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x-12-7x-1}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
Do the multiplications in 3\times 2\left(x-2\right)-\left(7x+1\right).
\frac{-x-13}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
Combine like terms in 6x-12-7x-1.
\frac{-x-13}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{\left(2x-3\right)\left(x+4\right)}
Factor 2x^{2}+5x-12.
\frac{\left(-x-13\right)\left(2x-3\right)\left(x+4\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}-\frac{\left(x^{2}-5x-24\right)\times 2\left(x-2\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-2\right) and \left(2x-3\right)\left(x+4\right) is 2\left(x-2\right)\left(2x-3\right)\left(x+4\right). Multiply \frac{-x-13}{2\left(x-2\right)} times \frac{\left(2x-3\right)\left(x+4\right)}{\left(2x-3\right)\left(x+4\right)}. Multiply \frac{x^{2}-5x-24}{\left(2x-3\right)\left(x+4\right)} times \frac{2\left(x-2\right)}{2\left(x-2\right)}.
\frac{\left(-x-13\right)\left(2x-3\right)\left(x+4\right)-\left(x^{2}-5x-24\right)\times 2\left(x-2\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}
Since \frac{\left(-x-13\right)\left(2x-3\right)\left(x+4\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)} and \frac{\left(x^{2}-5x-24\right)\times 2\left(x-2\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{3}-5x^{2}+12x-26x^{2}-65x+156-2x^{3}+4x^{2}+10x^{2}-20x+48x-96}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}
Do the multiplications in \left(-x-13\right)\left(2x-3\right)\left(x+4\right)-\left(x^{2}-5x-24\right)\times 2\left(x-2\right).
\frac{-4x^{3}-17x^{2}-25x+60}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}
Combine like terms in -2x^{3}-5x^{2}+12x-26x^{2}-65x+156-2x^{3}+4x^{2}+10x^{2}-20x+48x-96.
\frac{-4x^{3}-17x^{2}-25x+60}{4x^{3}+2x^{2}-44x+48}
Expand 2\left(x-2\right)\left(2x-3\right)\left(x+4\right).
3-\frac{7x+1}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
Factor 2x-4.
\frac{3\times 2\left(x-2\right)}{2\left(x-2\right)}-\frac{7x+1}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2\left(x-2\right)}{2\left(x-2\right)}.
\frac{3\times 2\left(x-2\right)-\left(7x+1\right)}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
Since \frac{3\times 2\left(x-2\right)}{2\left(x-2\right)} and \frac{7x+1}{2\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{6x-12-7x-1}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
Do the multiplications in 3\times 2\left(x-2\right)-\left(7x+1\right).
\frac{-x-13}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{2x^{2}+5x-12}
Combine like terms in 6x-12-7x-1.
\frac{-x-13}{2\left(x-2\right)}-\frac{x^{2}-5x-24}{\left(2x-3\right)\left(x+4\right)}
Factor 2x^{2}+5x-12.
\frac{\left(-x-13\right)\left(2x-3\right)\left(x+4\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}-\frac{\left(x^{2}-5x-24\right)\times 2\left(x-2\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-2\right) and \left(2x-3\right)\left(x+4\right) is 2\left(x-2\right)\left(2x-3\right)\left(x+4\right). Multiply \frac{-x-13}{2\left(x-2\right)} times \frac{\left(2x-3\right)\left(x+4\right)}{\left(2x-3\right)\left(x+4\right)}. Multiply \frac{x^{2}-5x-24}{\left(2x-3\right)\left(x+4\right)} times \frac{2\left(x-2\right)}{2\left(x-2\right)}.
\frac{\left(-x-13\right)\left(2x-3\right)\left(x+4\right)-\left(x^{2}-5x-24\right)\times 2\left(x-2\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}
Since \frac{\left(-x-13\right)\left(2x-3\right)\left(x+4\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)} and \frac{\left(x^{2}-5x-24\right)\times 2\left(x-2\right)}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{3}-5x^{2}+12x-26x^{2}-65x+156-2x^{3}+4x^{2}+10x^{2}-20x+48x-96}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}
Do the multiplications in \left(-x-13\right)\left(2x-3\right)\left(x+4\right)-\left(x^{2}-5x-24\right)\times 2\left(x-2\right).
\frac{-4x^{3}-17x^{2}-25x+60}{2\left(x-2\right)\left(2x-3\right)\left(x+4\right)}
Combine like terms in -2x^{3}-5x^{2}+12x-26x^{2}-65x+156-2x^{3}+4x^{2}+10x^{2}-20x+48x-96.
\frac{-4x^{3}-17x^{2}-25x+60}{4x^{3}+2x^{2}-44x+48}
Expand 2\left(x-2\right)\left(2x-3\right)\left(x+4\right).