Evaluate
\frac{2}{3}\approx 0.666666667
Factor
\frac{2}{3} = 0.6666666666666666
Share
Copied to clipboard
\frac{6}{2}-\frac{1}{2}-\frac{-2}{3}\times \frac{5}{2}-\frac{2\times 2+3}{2}
Convert 3 to fraction \frac{6}{2}.
\frac{6-1}{2}-\frac{-2}{3}\times \frac{5}{2}-\frac{2\times 2+3}{2}
Since \frac{6}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{2}-\frac{-2}{3}\times \frac{5}{2}-\frac{2\times 2+3}{2}
Subtract 1 from 6 to get 5.
\frac{5}{2}-\left(-\frac{2}{3}\times \frac{5}{2}\right)-\frac{2\times 2+3}{2}
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{5}{2}-\frac{-2\times 5}{3\times 2}-\frac{2\times 2+3}{2}
Multiply -\frac{2}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{2}-\frac{-10}{6}-\frac{2\times 2+3}{2}
Do the multiplications in the fraction \frac{-2\times 5}{3\times 2}.
\frac{5}{2}-\left(-\frac{5}{3}\right)-\frac{2\times 2+3}{2}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
\frac{5}{2}+\frac{5}{3}-\frac{2\times 2+3}{2}
The opposite of -\frac{5}{3} is \frac{5}{3}.
\frac{15}{6}+\frac{10}{6}-\frac{2\times 2+3}{2}
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{5}{3} to fractions with denominator 6.
\frac{15+10}{6}-\frac{2\times 2+3}{2}
Since \frac{15}{6} and \frac{10}{6} have the same denominator, add them by adding their numerators.
\frac{25}{6}-\frac{2\times 2+3}{2}
Add 15 and 10 to get 25.
\frac{25}{6}-\frac{4+3}{2}
Multiply 2 and 2 to get 4.
\frac{25}{6}-\frac{7}{2}
Add 4 and 3 to get 7.
\frac{25}{6}-\frac{21}{6}
Least common multiple of 6 and 2 is 6. Convert \frac{25}{6} and \frac{7}{2} to fractions with denominator 6.
\frac{25-21}{6}
Since \frac{25}{6} and \frac{21}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{6}
Subtract 21 from 25 to get 4.
\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}