Solve for x
x\geq \frac{1}{3}
Graph
Share
Copied to clipboard
3x-15-2\geq -4\left(-3+8\right)+4
Use the distributive property to multiply 3 by x-5.
3x-17\geq -4\left(-3+8\right)+4
Subtract 2 from -15 to get -17.
3x-17\geq -4\times 5+4
Add -3 and 8 to get 5.
3x-17\geq -20+4
Multiply -4 and 5 to get -20.
3x-17\geq -16
Add -20 and 4 to get -16.
3x\geq -16+17
Add 17 to both sides.
3x\geq 1
Add -16 and 17 to get 1.
x\geq \frac{1}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}