Solve for x
x=-2y
Solve for y
y=-\frac{x}{2}
Graph
Share
Copied to clipboard
3x-15+2\left(3y+5\right)=-5
Use the distributive property to multiply 3 by x-5.
3x-15+6y+10=-5
Use the distributive property to multiply 2 by 3y+5.
3x-5+6y=-5
Add -15 and 10 to get -5.
3x+6y=-5+5
Add 5 to both sides.
3x+6y=0
Add -5 and 5 to get 0.
3x=-6y
Subtract 6y from both sides. Anything subtracted from zero gives its negation.
\frac{3x}{3}=-\frac{6y}{3}
Divide both sides by 3.
x=-\frac{6y}{3}
Dividing by 3 undoes the multiplication by 3.
x=-2y
Divide -6y by 3.
3x-15+2\left(3y+5\right)=-5
Use the distributive property to multiply 3 by x-5.
3x-15+6y+10=-5
Use the distributive property to multiply 2 by 3y+5.
3x-5+6y=-5
Add -15 and 10 to get -5.
-5+6y=-5-3x
Subtract 3x from both sides.
6y=-5-3x+5
Add 5 to both sides.
6y=-3x
Add -5 and 5 to get 0.
\frac{6y}{6}=-\frac{3x}{6}
Divide both sides by 6.
y=-\frac{3x}{6}
Dividing by 6 undoes the multiplication by 6.
y=-\frac{x}{2}
Divide -3x by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}