Solve for x
x=3
x=-1
Graph
Share
Copied to clipboard
3\left(x^{2}-2x+1\right)-12=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
3x^{2}-6x+3-12=0
Use the distributive property to multiply 3 by x^{2}-2x+1.
3x^{2}-6x-9=0
Subtract 12 from 3 to get -9.
x^{2}-2x-3=0
Divide both sides by 3.
a+b=-2 ab=1\left(-3\right)=-3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
a=-3 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x^{2}-3x\right)+\left(x-3\right)
Rewrite x^{2}-2x-3 as \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Factor out x in x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Factor out common term x-3 by using distributive property.
x=3 x=-1
To find equation solutions, solve x-3=0 and x+1=0.
3\left(x^{2}-2x+1\right)-12=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
3x^{2}-6x+3-12=0
Use the distributive property to multiply 3 by x^{2}-2x+1.
3x^{2}-6x-9=0
Subtract 12 from 3 to get -9.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-9\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -6 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-9\right)}}{2\times 3}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\left(-9\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\times 3}
Multiply -12 times -9.
x=\frac{-\left(-6\right)±\sqrt{144}}{2\times 3}
Add 36 to 108.
x=\frac{-\left(-6\right)±12}{2\times 3}
Take the square root of 144.
x=\frac{6±12}{2\times 3}
The opposite of -6 is 6.
x=\frac{6±12}{6}
Multiply 2 times 3.
x=\frac{18}{6}
Now solve the equation x=\frac{6±12}{6} when ± is plus. Add 6 to 12.
x=3
Divide 18 by 6.
x=-\frac{6}{6}
Now solve the equation x=\frac{6±12}{6} when ± is minus. Subtract 12 from 6.
x=-1
Divide -6 by 6.
x=3 x=-1
The equation is now solved.
3\left(x^{2}-2x+1\right)-12=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
3x^{2}-6x+3-12=0
Use the distributive property to multiply 3 by x^{2}-2x+1.
3x^{2}-6x-9=0
Subtract 12 from 3 to get -9.
3x^{2}-6x=9
Add 9 to both sides. Anything plus zero gives itself.
\frac{3x^{2}-6x}{3}=\frac{9}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{6}{3}\right)x=\frac{9}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-2x=\frac{9}{3}
Divide -6 by 3.
x^{2}-2x=3
Divide 9 by 3.
x^{2}-2x+1=3+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=4
Add 3 to 1.
\left(x-1\right)^{2}=4
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-1=2 x-1=-2
Simplify.
x=3 x=-1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}