Solve for x
x\leq \frac{3}{2}
Graph
Share
Copied to clipboard
3x+3\left(-\frac{5}{6}\right)\leq x+\frac{1}{2}
Use the distributive property to multiply 3 by x-\frac{5}{6}.
3x+\frac{3\left(-5\right)}{6}\leq x+\frac{1}{2}
Express 3\left(-\frac{5}{6}\right) as a single fraction.
3x+\frac{-15}{6}\leq x+\frac{1}{2}
Multiply 3 and -5 to get -15.
3x-\frac{5}{2}\leq x+\frac{1}{2}
Reduce the fraction \frac{-15}{6} to lowest terms by extracting and canceling out 3.
3x-\frac{5}{2}-x\leq \frac{1}{2}
Subtract x from both sides.
2x-\frac{5}{2}\leq \frac{1}{2}
Combine 3x and -x to get 2x.
2x\leq \frac{1}{2}+\frac{5}{2}
Add \frac{5}{2} to both sides.
2x\leq \frac{1+5}{2}
Since \frac{1}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
2x\leq \frac{6}{2}
Add 1 and 5 to get 6.
2x\leq 3
Divide 6 by 2 to get 3.
x\leq \frac{3}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}