Solve for a
a=\frac{3b-x}{2}
Solve for b
b=\frac{x+2a}{3}
Graph
Share
Copied to clipboard
3x+3a-b=2\left(x+b\right)+a
Use the distributive property to multiply 3 by x+a.
3x+3a-b=2x+2b+a
Use the distributive property to multiply 2 by x+b.
3x+3a-b-a=2x+2b
Subtract a from both sides.
3x+2a-b=2x+2b
Combine 3a and -a to get 2a.
2a-b=2x+2b-3x
Subtract 3x from both sides.
2a-b=-x+2b
Combine 2x and -3x to get -x.
2a=-x+2b+b
Add b to both sides.
2a=-x+3b
Combine 2b and b to get 3b.
2a=3b-x
The equation is in standard form.
\frac{2a}{2}=\frac{3b-x}{2}
Divide both sides by 2.
a=\frac{3b-x}{2}
Dividing by 2 undoes the multiplication by 2.
3x+3a-b=2\left(x+b\right)+a
Use the distributive property to multiply 3 by x+a.
3x+3a-b=2x+2b+a
Use the distributive property to multiply 2 by x+b.
3x+3a-b-2b=2x+a
Subtract 2b from both sides.
3x+3a-3b=2x+a
Combine -b and -2b to get -3b.
3a-3b=2x+a-3x
Subtract 3x from both sides.
3a-3b=-x+a
Combine 2x and -3x to get -x.
-3b=-x+a-3a
Subtract 3a from both sides.
-3b=-x-2a
Combine a and -3a to get -2a.
\frac{-3b}{-3}=\frac{-x-2a}{-3}
Divide both sides by -3.
b=\frac{-x-2a}{-3}
Dividing by -3 undoes the multiplication by -3.
b=\frac{x+2a}{3}
Divide -x-2a by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}