Solve for x
x = \frac{61}{7} = 8\frac{5}{7} \approx 8.714285714
Graph
Share
Copied to clipboard
18\left(x+7\right)-24\left(x+2\right)=3\left(x+5\right)-2\left(x-1\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
18x+126-24\left(x+2\right)=3\left(x+5\right)-2\left(x-1\right)
Use the distributive property to multiply 18 by x+7.
18x+126-24x-48=3\left(x+5\right)-2\left(x-1\right)
Use the distributive property to multiply -24 by x+2.
-6x+126-48=3\left(x+5\right)-2\left(x-1\right)
Combine 18x and -24x to get -6x.
-6x+78=3\left(x+5\right)-2\left(x-1\right)
Subtract 48 from 126 to get 78.
-6x+78=3x+15-2\left(x-1\right)
Use the distributive property to multiply 3 by x+5.
-6x+78=3x+15-2x+2
Use the distributive property to multiply -2 by x-1.
-6x+78=x+15+2
Combine 3x and -2x to get x.
-6x+78=x+17
Add 15 and 2 to get 17.
-6x+78-x=17
Subtract x from both sides.
-7x+78=17
Combine -6x and -x to get -7x.
-7x=17-78
Subtract 78 from both sides.
-7x=-61
Subtract 78 from 17 to get -61.
x=\frac{-61}{-7}
Divide both sides by -7.
x=\frac{61}{7}
Fraction \frac{-61}{-7} can be simplified to \frac{61}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}