Solve for x
x<4
Graph
Share
Copied to clipboard
\left(3x+15\right)\left(x-5\right)<\left(3x-20\right)x+5
Use the distributive property to multiply 3 by x+5.
3x^{2}-75<\left(3x-20\right)x+5
Use the distributive property to multiply 3x+15 by x-5 and combine like terms.
3x^{2}-75<3x^{2}-20x+5
Use the distributive property to multiply 3x-20 by x.
3x^{2}-75-3x^{2}<-20x+5
Subtract 3x^{2} from both sides.
-75<-20x+5
Combine 3x^{2} and -3x^{2} to get 0.
-20x+5>-75
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
-20x>-75-5
Subtract 5 from both sides.
-20x>-80
Subtract 5 from -75 to get -80.
x<\frac{-80}{-20}
Divide both sides by -20. Since -20 is negative, the inequality direction is changed.
x<4
Divide -80 by -20 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}