Solve for x
x=-5
x = -\frac{10}{3} = -3\frac{1}{3} \approx -3.333333333
Graph
Share
Copied to clipboard
3\left(x^{2}+8x+16\right)+x+4-2=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
3x^{2}+24x+48+x+4-2=0
Use the distributive property to multiply 3 by x^{2}+8x+16.
3x^{2}+25x+48+4-2=0
Combine 24x and x to get 25x.
3x^{2}+25x+52-2=0
Add 48 and 4 to get 52.
3x^{2}+25x+50=0
Subtract 2 from 52 to get 50.
a+b=25 ab=3\times 50=150
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+50. To find a and b, set up a system to be solved.
1,150 2,75 3,50 5,30 6,25 10,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 150.
1+150=151 2+75=77 3+50=53 5+30=35 6+25=31 10+15=25
Calculate the sum for each pair.
a=10 b=15
The solution is the pair that gives sum 25.
\left(3x^{2}+10x\right)+\left(15x+50\right)
Rewrite 3x^{2}+25x+50 as \left(3x^{2}+10x\right)+\left(15x+50\right).
x\left(3x+10\right)+5\left(3x+10\right)
Factor out x in the first and 5 in the second group.
\left(3x+10\right)\left(x+5\right)
Factor out common term 3x+10 by using distributive property.
x=-\frac{10}{3} x=-5
To find equation solutions, solve 3x+10=0 and x+5=0.
3\left(x^{2}+8x+16\right)+x+4-2=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
3x^{2}+24x+48+x+4-2=0
Use the distributive property to multiply 3 by x^{2}+8x+16.
3x^{2}+25x+48+4-2=0
Combine 24x and x to get 25x.
3x^{2}+25x+52-2=0
Add 48 and 4 to get 52.
3x^{2}+25x+50=0
Subtract 2 from 52 to get 50.
x=\frac{-25±\sqrt{25^{2}-4\times 3\times 50}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 25 for b, and 50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 3\times 50}}{2\times 3}
Square 25.
x=\frac{-25±\sqrt{625-12\times 50}}{2\times 3}
Multiply -4 times 3.
x=\frac{-25±\sqrt{625-600}}{2\times 3}
Multiply -12 times 50.
x=\frac{-25±\sqrt{25}}{2\times 3}
Add 625 to -600.
x=\frac{-25±5}{2\times 3}
Take the square root of 25.
x=\frac{-25±5}{6}
Multiply 2 times 3.
x=-\frac{20}{6}
Now solve the equation x=\frac{-25±5}{6} when ± is plus. Add -25 to 5.
x=-\frac{10}{3}
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{6}
Now solve the equation x=\frac{-25±5}{6} when ± is minus. Subtract 5 from -25.
x=-5
Divide -30 by 6.
x=-\frac{10}{3} x=-5
The equation is now solved.
3\left(x^{2}+8x+16\right)+x+4-2=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
3x^{2}+24x+48+x+4-2=0
Use the distributive property to multiply 3 by x^{2}+8x+16.
3x^{2}+25x+48+4-2=0
Combine 24x and x to get 25x.
3x^{2}+25x+52-2=0
Add 48 and 4 to get 52.
3x^{2}+25x+50=0
Subtract 2 from 52 to get 50.
3x^{2}+25x=-50
Subtract 50 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}+25x}{3}=-\frac{50}{3}
Divide both sides by 3.
x^{2}+\frac{25}{3}x=-\frac{50}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{25}{3}x+\left(\frac{25}{6}\right)^{2}=-\frac{50}{3}+\left(\frac{25}{6}\right)^{2}
Divide \frac{25}{3}, the coefficient of the x term, by 2 to get \frac{25}{6}. Then add the square of \frac{25}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{25}{3}x+\frac{625}{36}=-\frac{50}{3}+\frac{625}{36}
Square \frac{25}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{25}{3}x+\frac{625}{36}=\frac{25}{36}
Add -\frac{50}{3} to \frac{625}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{6}\right)^{2}=\frac{25}{36}
Factor x^{2}+\frac{25}{3}x+\frac{625}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x+\frac{25}{6}=\frac{5}{6} x+\frac{25}{6}=-\frac{5}{6}
Simplify.
x=-\frac{10}{3} x=-5
Subtract \frac{25}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}