Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}+4x+4\right)-27=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}+12x+12-27=0
Use the distributive property to multiply 3 by x^{2}+4x+4.
3x^{2}+12x-15=0
Subtract 27 from 12 to get -15.
x^{2}+4x-5=0
Divide both sides by 3.
a+b=4 ab=1\left(-5\right)=-5
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
a=-1 b=5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(x^{2}-x\right)+\left(5x-5\right)
Rewrite x^{2}+4x-5 as \left(x^{2}-x\right)+\left(5x-5\right).
x\left(x-1\right)+5\left(x-1\right)
Factor out x in the first and 5 in the second group.
\left(x-1\right)\left(x+5\right)
Factor out common term x-1 by using distributive property.
x=1 x=-5
To find equation solutions, solve x-1=0 and x+5=0.
3\left(x^{2}+4x+4\right)-27=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}+12x+12-27=0
Use the distributive property to multiply 3 by x^{2}+4x+4.
3x^{2}+12x-15=0
Subtract 27 from 12 to get -15.
x=\frac{-12±\sqrt{12^{2}-4\times 3\left(-15\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 12 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 3\left(-15\right)}}{2\times 3}
Square 12.
x=\frac{-12±\sqrt{144-12\left(-15\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-12±\sqrt{144+180}}{2\times 3}
Multiply -12 times -15.
x=\frac{-12±\sqrt{324}}{2\times 3}
Add 144 to 180.
x=\frac{-12±18}{2\times 3}
Take the square root of 324.
x=\frac{-12±18}{6}
Multiply 2 times 3.
x=\frac{6}{6}
Now solve the equation x=\frac{-12±18}{6} when ± is plus. Add -12 to 18.
x=1
Divide 6 by 6.
x=-\frac{30}{6}
Now solve the equation x=\frac{-12±18}{6} when ± is minus. Subtract 18 from -12.
x=-5
Divide -30 by 6.
x=1 x=-5
The equation is now solved.
3\left(x^{2}+4x+4\right)-27=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}+12x+12-27=0
Use the distributive property to multiply 3 by x^{2}+4x+4.
3x^{2}+12x-15=0
Subtract 27 from 12 to get -15.
3x^{2}+12x=15
Add 15 to both sides. Anything plus zero gives itself.
\frac{3x^{2}+12x}{3}=\frac{15}{3}
Divide both sides by 3.
x^{2}+\frac{12}{3}x=\frac{15}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+4x=\frac{15}{3}
Divide 12 by 3.
x^{2}+4x=5
Divide 15 by 3.
x^{2}+4x+2^{2}=5+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=5+4
Square 2.
x^{2}+4x+4=9
Add 5 to 4.
\left(x+2\right)^{2}=9
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x+2=3 x+2=-3
Simplify.
x=1 x=-5
Subtract 2 from both sides of the equation.