Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}+2x+1\right)-\left(2x+1\right)^{2}=2x-14
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{2}+6x+3-\left(2x+1\right)^{2}=2x-14
Use the distributive property to multiply 3 by x^{2}+2x+1.
3x^{2}+6x+3-\left(4x^{2}+4x+1\right)=2x-14
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
3x^{2}+6x+3-4x^{2}-4x-1=2x-14
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
-x^{2}+6x+3-4x-1=2x-14
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}+2x+3-1=2x-14
Combine 6x and -4x to get 2x.
-x^{2}+2x+2=2x-14
Subtract 1 from 3 to get 2.
-x^{2}+2x+2-2x=-14
Subtract 2x from both sides.
-x^{2}+2=-14
Combine 2x and -2x to get 0.
-x^{2}=-14-2
Subtract 2 from both sides.
-x^{2}=-16
Subtract 2 from -14 to get -16.
x^{2}=\frac{-16}{-1}
Divide both sides by -1.
x^{2}=16
Fraction \frac{-16}{-1} can be simplified to 16 by removing the negative sign from both the numerator and the denominator.
x=4 x=-4
Take the square root of both sides of the equation.
3\left(x^{2}+2x+1\right)-\left(2x+1\right)^{2}=2x-14
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
3x^{2}+6x+3-\left(2x+1\right)^{2}=2x-14
Use the distributive property to multiply 3 by x^{2}+2x+1.
3x^{2}+6x+3-\left(4x^{2}+4x+1\right)=2x-14
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
3x^{2}+6x+3-4x^{2}-4x-1=2x-14
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
-x^{2}+6x+3-4x-1=2x-14
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}+2x+3-1=2x-14
Combine 6x and -4x to get 2x.
-x^{2}+2x+2=2x-14
Subtract 1 from 3 to get 2.
-x^{2}+2x+2-2x=-14
Subtract 2x from both sides.
-x^{2}+2=-14
Combine 2x and -2x to get 0.
-x^{2}+2+14=0
Add 14 to both sides.
-x^{2}+16=0
Add 2 and 14 to get 16.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 16}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\times 16}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{64}}{2\left(-1\right)}
Multiply 4 times 16.
x=\frac{0±8}{2\left(-1\right)}
Take the square root of 64.
x=\frac{0±8}{-2}
Multiply 2 times -1.
x=-4
Now solve the equation x=\frac{0±8}{-2} when ± is plus. Divide 8 by -2.
x=4
Now solve the equation x=\frac{0±8}{-2} when ± is minus. Divide -8 by -2.
x=-4 x=4
The equation is now solved.