Solve for x
x=-\frac{4}{5}=-0.8
Graph
Share
Copied to clipboard
3x+3\times \frac{1}{3}-4=4\left(2x+\frac{1}{4}\right)
Use the distributive property to multiply 3 by x+\frac{1}{3}.
3x+1-4=4\left(2x+\frac{1}{4}\right)
Cancel out 3 and 3.
3x-3=4\left(2x+\frac{1}{4}\right)
Subtract 4 from 1 to get -3.
3x-3=8x+4\times \frac{1}{4}
Use the distributive property to multiply 4 by 2x+\frac{1}{4}.
3x-3=8x+1
Cancel out 4 and 4.
3x-3-8x=1
Subtract 8x from both sides.
-5x-3=1
Combine 3x and -8x to get -5x.
-5x=1+3
Add 3 to both sides.
-5x=4
Add 1 and 3 to get 4.
x=\frac{4}{-5}
Divide both sides by -5.
x=-\frac{4}{5}
Fraction \frac{4}{-5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}