Solve for p
p=\frac{q}{2}-\frac{1}{3}
Solve for q
q=2p+\frac{2}{3}
Share
Copied to clipboard
3q+3=6p+5
Use the distributive property to multiply 3 by q+1.
6p+5=3q+3
Swap sides so that all variable terms are on the left hand side.
6p=3q+3-5
Subtract 5 from both sides.
6p=3q-2
Subtract 5 from 3 to get -2.
\frac{6p}{6}=\frac{3q-2}{6}
Divide both sides by 6.
p=\frac{3q-2}{6}
Dividing by 6 undoes the multiplication by 6.
p=\frac{q}{2}-\frac{1}{3}
Divide 3q-2 by 6.
3q+3=6p+5
Use the distributive property to multiply 3 by q+1.
3q=6p+5-3
Subtract 3 from both sides.
3q=6p+2
Subtract 3 from 5 to get 2.
\frac{3q}{3}=\frac{6p+2}{3}
Divide both sides by 3.
q=\frac{6p+2}{3}
Dividing by 3 undoes the multiplication by 3.
q=2p+\frac{2}{3}
Divide 6p+2 by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}