Solve for n
n=\frac{1}{2}=0.5
Share
Copied to clipboard
3n-6+4\left(2-n\right)=n+2n
Use the distributive property to multiply 3 by n-2.
3n-6+8-4n=n+2n
Use the distributive property to multiply 4 by 2-n.
3n+2-4n=n+2n
Add -6 and 8 to get 2.
-n+2=n+2n
Combine 3n and -4n to get -n.
-n+2=3n
Combine n and 2n to get 3n.
-n+2-3n=0
Subtract 3n from both sides.
-4n+2=0
Combine -n and -3n to get -4n.
-4n=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
n=\frac{-2}{-4}
Divide both sides by -4.
n=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}