Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(49-14x+x^{2}\right)-3\left(x-2\right)=4\left(x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
147-42x+3x^{2}-3\left(x-2\right)=4\left(x-3\right)
Use the distributive property to multiply 3 by 49-14x+x^{2}.
147-42x+3x^{2}-3x+6=4\left(x-3\right)
Use the distributive property to multiply -3 by x-2.
147-45x+3x^{2}+6=4\left(x-3\right)
Combine -42x and -3x to get -45x.
153-45x+3x^{2}=4\left(x-3\right)
Add 147 and 6 to get 153.
153-45x+3x^{2}=4x-12
Use the distributive property to multiply 4 by x-3.
153-45x+3x^{2}-4x=-12
Subtract 4x from both sides.
153-49x+3x^{2}=-12
Combine -45x and -4x to get -49x.
153-49x+3x^{2}+12=0
Add 12 to both sides.
165-49x+3x^{2}=0
Add 153 and 12 to get 165.
3x^{2}-49x+165=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-49\right)±\sqrt{\left(-49\right)^{2}-4\times 3\times 165}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -49 for b, and 165 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-49\right)±\sqrt{2401-4\times 3\times 165}}{2\times 3}
Square -49.
x=\frac{-\left(-49\right)±\sqrt{2401-12\times 165}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-49\right)±\sqrt{2401-1980}}{2\times 3}
Multiply -12 times 165.
x=\frac{-\left(-49\right)±\sqrt{421}}{2\times 3}
Add 2401 to -1980.
x=\frac{49±\sqrt{421}}{2\times 3}
The opposite of -49 is 49.
x=\frac{49±\sqrt{421}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{421}+49}{6}
Now solve the equation x=\frac{49±\sqrt{421}}{6} when ± is plus. Add 49 to \sqrt{421}.
x=\frac{49-\sqrt{421}}{6}
Now solve the equation x=\frac{49±\sqrt{421}}{6} when ± is minus. Subtract \sqrt{421} from 49.
x=\frac{\sqrt{421}+49}{6} x=\frac{49-\sqrt{421}}{6}
The equation is now solved.
3\left(49-14x+x^{2}\right)-3\left(x-2\right)=4\left(x-3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-x\right)^{2}.
147-42x+3x^{2}-3\left(x-2\right)=4\left(x-3\right)
Use the distributive property to multiply 3 by 49-14x+x^{2}.
147-42x+3x^{2}-3x+6=4\left(x-3\right)
Use the distributive property to multiply -3 by x-2.
147-45x+3x^{2}+6=4\left(x-3\right)
Combine -42x and -3x to get -45x.
153-45x+3x^{2}=4\left(x-3\right)
Add 147 and 6 to get 153.
153-45x+3x^{2}=4x-12
Use the distributive property to multiply 4 by x-3.
153-45x+3x^{2}-4x=-12
Subtract 4x from both sides.
153-49x+3x^{2}=-12
Combine -45x and -4x to get -49x.
-49x+3x^{2}=-12-153
Subtract 153 from both sides.
-49x+3x^{2}=-165
Subtract 153 from -12 to get -165.
3x^{2}-49x=-165
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-49x}{3}=-\frac{165}{3}
Divide both sides by 3.
x^{2}-\frac{49}{3}x=-\frac{165}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{49}{3}x=-55
Divide -165 by 3.
x^{2}-\frac{49}{3}x+\left(-\frac{49}{6}\right)^{2}=-55+\left(-\frac{49}{6}\right)^{2}
Divide -\frac{49}{3}, the coefficient of the x term, by 2 to get -\frac{49}{6}. Then add the square of -\frac{49}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{49}{3}x+\frac{2401}{36}=-55+\frac{2401}{36}
Square -\frac{49}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{49}{3}x+\frac{2401}{36}=\frac{421}{36}
Add -55 to \frac{2401}{36}.
\left(x-\frac{49}{6}\right)^{2}=\frac{421}{36}
Factor x^{2}-\frac{49}{3}x+\frac{2401}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{49}{6}\right)^{2}}=\sqrt{\frac{421}{36}}
Take the square root of both sides of the equation.
x-\frac{49}{6}=\frac{\sqrt{421}}{6} x-\frac{49}{6}=-\frac{\sqrt{421}}{6}
Simplify.
x=\frac{\sqrt{421}+49}{6} x=\frac{49-\sqrt{421}}{6}
Add \frac{49}{6} to both sides of the equation.