Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(3\times 7+3\times \left(-5i\right)\right)\left(-3+4i\right)
Multiply 3 times 7-5i.
\left(21-15i\right)\left(-3+4i\right)
Do the multiplications.
21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4i^{2}
Multiply complex numbers 21-15i and -3+4i like you multiply binomials.
21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4\left(-1\right)
By definition, i^{2} is -1.
-63+84i+45i+60
Do the multiplications.
-63+60+\left(84+45\right)i
Combine the real and imaginary parts.
-3+129i
Do the additions.
Re(\left(3\times 7+3\times \left(-5i\right)\right)\left(-3+4i\right))
Multiply 3 times 7-5i.
Re(\left(21-15i\right)\left(-3+4i\right))
Do the multiplications in 3\times 7+3\times \left(-5i\right).
Re(21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4i^{2})
Multiply complex numbers 21-15i and -3+4i like you multiply binomials.
Re(21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4\left(-1\right))
By definition, i^{2} is -1.
Re(-63+84i+45i+60)
Do the multiplications in 21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4\left(-1\right).
Re(-63+60+\left(84+45\right)i)
Combine the real and imaginary parts in -63+84i+45i+60.
Re(-3+129i)
Do the additions in -63+60+\left(84+45\right)i.
-3
The real part of -3+129i is -3.