Evaluate
-3+129i
Real Part
-3
Share
Copied to clipboard
\left(3\times 7+3\times \left(-5i\right)\right)\left(-3+4i\right)
Multiply 3 times 7-5i.
\left(21-15i\right)\left(-3+4i\right)
Do the multiplications.
21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4i^{2}
Multiply complex numbers 21-15i and -3+4i like you multiply binomials.
21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4\left(-1\right)
By definition, i^{2} is -1.
-63+84i+45i+60
Do the multiplications.
-63+60+\left(84+45\right)i
Combine the real and imaginary parts.
-3+129i
Do the additions.
Re(\left(3\times 7+3\times \left(-5i\right)\right)\left(-3+4i\right))
Multiply 3 times 7-5i.
Re(\left(21-15i\right)\left(-3+4i\right))
Do the multiplications in 3\times 7+3\times \left(-5i\right).
Re(21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4i^{2})
Multiply complex numbers 21-15i and -3+4i like you multiply binomials.
Re(21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4\left(-1\right))
By definition, i^{2} is -1.
Re(-63+84i+45i+60)
Do the multiplications in 21\left(-3\right)+21\times \left(4i\right)-15i\left(-3\right)-15\times 4\left(-1\right).
Re(-63+60+\left(84+45\right)i)
Combine the real and imaginary parts in -63+84i+45i+60.
Re(-3+129i)
Do the additions in -63+60+\left(84+45\right)i.
-3
The real part of -3+129i is -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}